

Power System Planning and Trends Relevance to renewables

Stratos Tavoulareas

April 25, 2014

Presentation Outline

- Why should you care about power system planning?
- How decisions are made to build new power plants (what type and size; also when)?
- Key concepts such as peak demand, reserve margin, etc.
- Trends and challenges associated with the integration of renewables in power system planning and operation

FIVE GUIDING PRINCIPLES OF ENERGY SECTOR DIRECTIONS PAPER

- 1. Engage holistically to catalyze transformation of energy sector in the context of long-term systemwide planning, and apply a framework for assessing climate impacts of projects in that context
- 2. Emphasize improvements in financial, operational, and institutional environment
- 3. Seek market solutions and help foster private sector participation and investment
- 4. Embrace a multi-stakeholder, inclusive approach to energy development
- 5. Tailor approach to individual country circumstances

- Move away from narrow focus on project level technology choice to delivery of cost-effective results system-wide; *from projects to sector wide planning*
- Country engagement to be under-pinned by planning approach with <u>all</u> options on the table:
 - Long term horizon
 - System-wide optimization
 - Supply/demand integration
 - Regional vision

Typical power system planning problem

Long term generation planning

Generation Expansion Planning Typical Model

INPUT

OUTPUT

- Build schedule
- Costs

Load forecast

- Existing system
- Candidates
- Constraints
 - Reliability
 - Financial
 - Implementation

Key Inputs to Power System Planning

- Forecast of power demand (annual and peak)
- Existing power system (installed and available capacity; retirements; planned outages; hydro seasonality; etc.)
- New candidates (size limitations; capital and O&M costs; construction schedule; etc.)
- Power system reliability requirements
- Constraints (energy resources; financial; environmental; max capacity additions per year or per site)

Annual Energy Demand Forecast Example: Ukraine (2012-2030)

Source: Updated Energy Strategy of Ukraine until 2030 (June 7, 2012)

But demand variability needs to be considered Daily fluctuations of demand Every day is different!

Example: Daily Demand Profile of Tajikistan

Source: Mercados, Central Asia Study (2010)

Example: Romania/Peak demand growth

Source: Tonci Bakovic, IFC

Peak demand determines the need for capacity additions

Example: Russia Power system (as it was viewed in 2005)

Demand growth vs. existing capacity, MW

Key Inputs to Power System Planning

- Forecast of power demand (annual and peak)
- Existing power system (installed and available capacity; retirements; planned outages; hydro seasonality; etc.)
- New candidates (size limitations; capital and O&M costs; construction schedule; etc.)
- Power system reliability requirements
- Constraints (energy resources; financial; environmental; max capacity additions per year or per site)

Key Inputs to Power System Planning

- Forecast of power demand (annual and peak)
- Existing power system (installed and available capacity; retirements; planned outages; hydro seasonality; etc.)
- New candidates (size limitations; capital and O&M costs; construction schedule; etc.)
- Power system reliability requirements
- Constraints (energy resources; financial; environmental; max capacity additions per year or per site)

Capital costs of some technologies

Source: Own calculation with data from "Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies", World Bank / ESMAP. 2007

Variable O&M costs of some technologies

Source: Own calculation with data from "Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies", World Bank / ESMAP. 2007 and International Energy Agency. "Projected Costs of Generating Electricity 2010 Edition,"

Key Inputs to Power System Planning

- Forecast of power demand (annual and peak)
- Existing power system (installed and available capacity; retirements; planned outages; hydro seasonality; etc.)
- New candidates (size limitations; capital and O&M costs; construction schedule; etc.)
- Power system reliability requirements
- Constraints (energy resources; financial; environmental; max capacity additions per year or per site)

Reserve Margin and Operative Reserve Margin

Setting the reserve margin of the power system

Loss of Load Hours vs. Reserve Margin

Key Inputs to Power System Planning

- Forecast of power demand (annual and peak)
- Existing power system (installed and available capacity; retirements; planned outages; hydro seasonality; etc.)
- New candidates (size limitations; capital and O&M costs; construction schedule; etc.)
- Power system reliability requirements
- Constraints (energy resources; financial; environmental; max capacity additions per year or per site, etc.)

Objective Function

1. rice

2n

Levelized cost of electricity:

Equivalent cost per KWh including capital, operational, and a return on the investment (discount factor)

Plus environmental externalities

Typical output of generation expansion planning

Example of planning output: Ukraine (2010-2030)

Source: Updated Energy Strategy of Ukraine until 2030 (June 7, 2012)

Trends and challenges in power system planning

Especially, regarding integration of renewables

- Is planning relevant in a deregulated market?
- If so, who is responsible for planning?
- Increasing importance of environmental and social aspects; also, energy security
- Particularly for renewables:
 - How do you predict firm capacity?
 - How do you balance supply-demand
 - How do you adjust planning to take into account the rapidly growing contribution of distributed generation (e.g., roof-top energy systems)?

Who is responsible for planning?

• Before Deregulation: Vertically integrated power company in collaboration with the Ministry for Energy

- After deregulation, "indicative planning" by one of the following:
 - > Ministry of Energy
 - Energy Regulator
 - Power System Operator

Energy planning is changing

- Traditional Planning:
 - Demand forecasting
 - Least-cost expansion planning
 - > Environmental assessment as an afterthought

•Modern Planning:

- Integrated resource planning (energy efficiency/DSM; peak-shifting)
- Least-cost expansion planning integrating environmental externalities; ESIA
- > More attention to renewables and hydro
- Energy security considerations

Challenges for Renewables

Renewables have different characteristics than traditional energy options

Solar and wind, in particular:

- Intermittent/variable
- Firm capacity much lower than installed capacity
- > Not always matching the demand profile

Typical Residential Household using 40 kWh per day Utility "On Peak" from 2 p.m. to 7 p.m.

TIME OF DAY Solar production typically peaks outside the Utilities peak demand

PV plant output on a sunny day (Sampling time 10 seconds)

Source: NERC (2009), page 28

Finance Corporation

PV Plant output on a partly-cloudy day (Sampling time 10 seconds)

Source: NERC (2009), page 28

So, how do you predict firm capacity at peak demand?

Source: NERC (2009), page 37.

Firm Capacity

- "Firm" capacity that can be relied upon at time of peak demand
 - Renewables and hydro (other than dam storage) are intermittent; a percentage of the installed capacity is usually unavailable to meet peak demand
 - IEA estimates the combined average capacity credit of wind and solar at 9%, but it is location and project specific

Capacity of wind and solar PV and their system effects for the US and OECD Europe, 2035

Firm Capacity

- Planner's perspective:
 - ➤ 10- to 20-year outlook
 - > No firm capacity? IEA guide (9%)? proportional to Capacity Factor?
- The system operator's perspective:
 - Spot and day-ahead markets: Some firm capacity based on weather forecasts and improving predictive models
 - But be prepared for potential curtailment to deal with local grid congestion

How do you balance supply-demand?

- Increased system reserve margin
- Increased installed capacity for back-up (reserve)
- Increased need for storage hydro and natural gas power plants (example: Ukraine, hydro from 9GWs to 15 GWs)
- Take into account growth of distributed generation

The cost of short-term impacts..

Increase in reserve requirement

Source: IEA Task 25 Design and Operation of Power Systems with Large Amounts of Power

The cost of short-term impacts..

Source: IEA Task 25 Design and Operation of Power Systems with Large Amounts of Power

Wind Penetration - Impacts on Power System

- <5-10% market penetration: Costs negligible; no major issues
- 10-20%: Noticeable impacts; transmission strengthening maybe needed; comprehensive power system studies needed (re. local congestion; balancing; curtailment rules; need for reserve margin increase; etc.)
- >20%: Need for comprehensive assessment of power system design and operation; impact on competitive markets; etc.

Summary

- Power system planning: A well-established process; yet ever changing to accommodate new requirements (more emphasis on EE; environmental externalities; renewables; power market structure)
- Planning is still essential!

 As long-term prediction of firm capacity for renewables becomes more accurate, their role in power system planning will be enhanced further

Questions?

Extra slides

Typical Hourly Load Curve in Ukraine (Winter Day)

Source: NEC Ukrenergo

