GEOTHERMAL UTILIZATION

Andy Blair andy.blair@upflow.nz

'There is food at the end of my hands'

A person (or people) should use their abilities and the resources around them to create success for them and future generations

Geothermal Electricity Developments

Credit: Karl Spinks, Western Energy Services

Geothermal Project Model

Exploration of viable geothermal energy business models for gas & oil (G&O) companies in the Netherlands - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/A-conceptual-representation-of-the-lifecycle-of-a-geothermal-projects-with-the_fig4_326734294 [accessed 24 Mar, 2019]

Types of Geothermal Systems

No two geothermal systems are the same

Credit: Greg Bignall, GNS Science

Exploration Process

Geology

Geological mapping

Exploring Structure and Stress from Depth to Surface in the Wairakei Geothermal Field, New Zealand - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/A-Geological-map-of-the-Wairakei-Tauhara-area-Leonard-et-al-2010-with-superimposed_fig3_295720172 [accessed 24 Mar, 2019]

Credit: Juliet Newson, Reykjavik University

Geochemistry

Fluids and gases at the surface tell us a lot about what is happening deep in the potential reservoir

By Sampling these we can learn about:

- Source of Fluid
- Type of Fluid
- Temperature in the reservoir
- Possible issues with reservoir fluids
- Changes in reservoir conditions

Credit: Jean Power, GNS Science

Geophysics

To assess the dimension of reservoir. Provide information on:

- reservoir structure
- likely location of productive zones
- natural heat balance

Geophysical surveys:

- Heat flow surveys
- Remote sensing
- Gravity
- Magnetics
- Resistivity
- Magneto-tellurics
- Seismic surveys
- Borehole geophysics

The success of any geophysical investigation depends on applying the best combination of techniques in the correct sequence to explore a prospect

Heise et al., 2008 Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. *Geophysical Journal International*, *173*(2): 740-750

- Red colours are low resistivity, blue colours are high resistivity.
- Black dots are earthquake locations.

Drilling

Identify controls on fluid flow, and tap deep-sourced fluid and heat.

The best way to understand reservoir potential but also the most expensive and highest risk

Credit: Kate Young , NREL

Permeability: "The state / quality of a material that causes it to allow liquids or gases to pass through it"

Permeabili

Fracture permeability (welded ignimbrite, andesite)

Bulk permeability (e.g. tuff, ignimbrite)

Resource Modelling

Models are not reality – they evolve over time with more knowledge

Conceptual (incl. geological framework)

Numerical Modelling

- Pre-development Steady State
- Long term Reservoir Performance
- Development Scenario Modelling (incl. effect of use on existing activities / features preliminary plant sizing etc).

Validation by geoscience investigation

Conceptual Model

Numerical Model

Geothermal Project Model

Exploration of viable geothermal energy business models for gas & oil (G&O) companies in the Netherlands - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/A-conceptual-representation-of-the-lifecycle-of-a-geothermal-projects-with-the_fig4_326734294 [accessed 24 Mar, 2019]

Operation and Maintenance

- Cost reduction vs maximising asset performance and output
- Changes in pressure, enthalpy and output over time
- Managing:
- o Steam purity
- Scaling and corrosion
- Matching changes in steamfield to power plant equipment
- Plant maintenance
- Effluent discharges

Silica scale of injection pipe, Dieng, Indonesia (Tohoku Electric Power Co, 2006)

(Lee, M., Operational Challenges in Geothermal Power Generation 2014)

Monitoring

The Primary Objective: to achieve sustainable resource use, while adaptively managing environmental issues, through strategies to avoid, remedy, or mitigate effects.

Monitoring is used to map the response of the geothermal reservoir to production:

- Maximise use (longevity of use)
- Identify (as early as possible) & minimise adverse environmental effects

Sampling of steam and water to identify:

- Changes in the aquifer
- Evidence of recharge
- Changes in natural features and shallow monitor bores

Monitoring

Geophysical surveys:

- Micro-gravity (subsurface mass changes)
- Micro-earthquake array
- Levelling surveys
- Airborne infra-red surveys & satellite imagery
- Surface heat-flux

From Reeves et al (2014)

Data

An effective resource data system, and utilising the data appropriately, is integral to effective resource management.

www. blog.leapfrog3d.com iPoint Software, Seequent, NZ

Environmental Considerations

Multifaceted approach to management of the environment. Expertise required:

- Modelling
- Civil, Mechanical and Electrical Engineering
- Geoscience (Geology, Geophysics, Geochemistry)
- Air and noise pollution
- Ecology
- Traffic
- Landscape
- Cultural
- Archaeology
- Land Discharges
- Carbon Footprint and Climate Change
- Geotechnical (Building & Infrastructure Effects)
- Economic analysis

Potential Issues

- Subsurface fluid phase changes & recharge (micro-gravity changes)
- Induced earthquakes
- Subsidence or inflation
- Gas emissions (CO2, H2S, Hg)
- Thermal feature decline
- Triggered hydrothermal eruptions & landslides
- Thermal ecosystem decline (plants, animals, insects or extremophiles)
- Toxic chemicals in water

Solutions

- Optimized field management through adaptive strategy
- Practical mitigation schemes e.g. targeted reinjection
- Gas extraction and sequestration technologies
- Protocols for hazard identification and avoidance
- Protection of selected representative thermal habitats
- Treatment of waste water chemical, biological

Credit: Contact Energy Green Borrowing Programme Framework 2018

Enhancing Surface Features

Shallow reinjection raised pressures and increased discharge of a natural acidchloride pool (2000-2004)

When shallow injection rates reduced, spring discharge ceased (2006)

Images: Colin Harvey

Geothermal Use

Geothermal Classification System

- Development
- Limited
- Protected

Balances the differing ways in which communities value geothermal resources

GNS Science

Carbon

• In ground thermal storage

Tenon

- 400,000 tonnes a year of logs
- 9 batch kilns
- Drying 150,000 m3 timber per annum
- 2006 moved to Geothermal Kiln drying
- Replaced a natural gas fired system
- Uses two phase geothermal fluid to provide heat to the kiln
- Kiln loops run at 180°C and 150°C
- 265 Employees

Transiting from gas to geothermal

- Reduced CO2 emitted by 28,000 tonnes/year
- Reduced operating costs by NZ\$1.2 Million/year
- Increased timber drying capacity by 5%

