SYSTEM PLANNING WITH SOLAR ENERGY

FEBRUARY 4, 2019

- ✓ Race between cost and value with high shares of renewables.
- ✓ Importance of planning to "get it right" with the renewable amount.
- ✓ Ingredients of planning with renewables.
- ✓ Evolution of planning models.

SOLAR PV BOOM

- ✓ Costs of solar PV below USD 1/Wp.
- High capacity to displace fossil fuel generation (high economic savings, high CO2 emissions reductions).
- ✓ Short deployment period.
- ✓ Easy to install and maintain.
- ✓ Modularity.
- ✓ Some project risks can be mitigated (e.g., WBG financial solutions).

Wind, solar and battery costs plummet

Data Source: Wind and solar levelized costs from Lazard. Battery pack costs from Bloomberg New Energy Finance

A race to beat fossil fuels on cost...

Data Source: Lazard (2017), Levelized Cost of Energy 2017, https://www.lazard.com/perspective/levelized-cost-of-energy-2017/.

A flawed model?

Marginal value of PV decreases: PV is worth as much as the fuel being saved, and at

high PV capacities, most of the fuel has already been displaced.

Figure 3. The intersection of long-term marginal costs (LCOE) and the market value gives the optimal amount of VRE (Hirth 2012b).

A race against declining value

...technology cost has to decline faster than the decline in value

Data Source: Sivaram & Kann (2016), Solar needs a more ambitious cost target, Nature Energy Vol. 1 (April 2016).

How can we preserve the value with large shares of PV?

How can we preserve the value with large shares of PV?

✓ What is the "right" amount of solar that we can deploy?

✓ When should new solar auctions be planned?

SOUND PLANNING

- ✓ How much solar can be exported/imported?
- ✓ How resource profile matches up with other renewables?

✓ How much battery capacity do we need to install?

Why is "planning" important?

Systematic framework to assess:

- ✓ How much?
- ✓ Where (mapping)?

✓ When?

✓ How?

- 1. meet future electricity demand
- 2. minimize cost to consumers, c\$/kWh
- 3. guarantee the stable operation of the system
- 4. comply with environmental standards

Planning for VRE

Key links between variable renewable energy, power system properties and planning

Key links between variable renewable energy, power system properties and planning

Source: "Planning for the Renewable Future", IRENA (2017)

Planning for VRE

Transition planning components and time horizon

Typical time resolution

Source: "Planning for the Renewable Future", IRENA (2017)

Typical timeframe

Tools and analyses for energy system planning with feedback

Latest trends in long-term energy planning

Planning models have been in constant evolution to adapt to new challenges (e.g., hydro uncertainty, renewable intermittency, optimize storage):

- > 1970's <u>Screening curves</u>: Originally planning analyses were solely based on economics.
- 1990's <u>Dynamic programming</u>: to reflect hydro uncertainty in planning analyses with low-time resolution (blocks).
- 2010 <u>Hourly resolution</u>: planning models with dispatch constraints, accounting for **hourly variability** of renewables and reserve needs to optimize thermal capacity.
- > 2016 Joint optimization of renewables and thermal capacity to estimate optimal penetration levels.
- 2018 Integrated planning: with renewables, batteries, hydro and network constraints (large dimensionality!)

Where is the limit?

Long-term planning models are limited by their **dimensionality** and **computational capacity**

"Short blanket theorem"

... and usually two or more blankets are needed.

Typical inputs and outputs in models for VRE planning

input

wind resource historical hourly availability

solar resource historical hourly availability

demand historical hourly data & growth expectation

topology and thermal limits of the transmission lines

fixed and variable cost of generating technologies

output

optimal generation investments

individual technologies

system carbon emissions

wholesale prices

Example: regional planning in WAPP

Example: solar planning with battery storage

Mix énergétique

Capacités Additionnelles

- ✓ It is not only about the <u>cost</u> of a technology, it is also about the <u>value</u> that it brings.
- ✓ Long-term planning is important to install the "right" amount of solar (and other

technologies) and minimize the cost paid by consumers.

- ✓ Different planning tools can address different aspects of **grid integration**.
- Solar, storage and other new technologies bring new challenges to planning (variability and uncertainty), but <u>models are evolving</u> to address these challenges.

Fernando de Sisternes: <u>fsisternes@worldbank.org</u>

