Grid Integration of Renewable Energy

Robert S. Kaneshiro, P.E. Operations Assistant Superintendent Hawaii Electric Light Company (HELCO)

October 2012

Contents

- HELCO System Overview
- Challenges of integrating solar at the distribution level
- System-wide operations issues that arise in small systems with large levels of renewables.

HELCO System Overview

- Autonomous system (no interconnections)
 - Minimum load ~90MW
 - Day peak ~160MW
 - Evening Peak ~180MW
- Automatic Generation Control (AGC) performs frequency control and economic dispatch.
- Renewable energy available from wind, hydro, geothermal and solar.

HELCO System Overview (cont'd)

- Generation Capacity:
 - Conventional (Fossil Fuel) unit dispatchable by AGC
 - Must-Run (24-hour) Units
 - 3-Steam Units (49MW)
 - 2-Combined Cycle Combustion Turbine Units (55MW)
 - 1-Geothermal (27MW off-peak, 30MW on-peak)
 - Intermediate Units
 - 2-2nd Combine Cycle Combustion Turbine Units (55MW)
 - 1-Simple Cycle Gas Turbine (20MW)

HELCO System Overview (cont'd)

- Generation Capacity (cont'd):
 - Peaking/Emergency Units
 - 2-Simple Cycle Gas Turbines (25MW)
 - 14-Small Diesel Generators (28MW)
 - Reserve Units (Requires >12hrs notice)
 - 2-Small Steam Units (15MW)

HELCO System Overview (cont'd)

- Generation Capacity (cont'd):
 - Renewable
 - Must-Run unit dispatchable by AGC
 - Geothermal (38MW)
 - Must-Take (As-Available)
 - Wind (30MW)
 - Run-of-River Hydroelectric (15MW)
 - Distributed Generation
 - Feed-In Tariff
 - Net Energy Metering
 - No Sale
 - Schedule Q

2000 Energy Source

2012 YTD Energy Source

Renewable Energy Percentage Duration

Average Daily %RE Profile

Growth of DG (Primarily PV)

As of August 2012

Distributed Generation

	PV	Hydro	Wind
FIT	250kW	-	-
NEM	13,579kW	49kW	121kW
No Sale (SIA)	3,096kW	-	40kW
Schedule Q	100kW	168kW	-
TOTAL	17,025kW	217kW	161kW

As of August 2012

Challenges of Integrating Solar at the distribution level

HELCO has:

- 64 Distribution
 Substations island-wide
- 143 Distribution Circuits

Until recently, any circuit that had DG more than 15% of the peak load required an engineering study.

Traditional distribution power circuits

 Power flows from distribution substation to the loads; as loads increase so does current flow, and voltage decreases.

'IS ITIMITI &I

- Substation transformer Load Tap Changers (LTC) automatically adjusts as load changes to maintain the circuit voltage within ±5%.
- Distribution transformers are normally installed with a common tap setting regardless of its location.
- Voltage regulators and capacitors are strategically placed on the distribution circuit to help maintain voltage on longer or heavier loaded circuits.

With the installation of Distributed Generation (DG):

- Power does not always flow from distribution substation breakers to the loads; depending on where the DG is located (and time of day for PV), it becomes challenging to determine the voltages on the distribution circuit.
- Distribution circuit voltage may not be adequately adjusted by the substation transformers Load Tap Changer (LTC) as the substation may not have sufficient voltage feedback. Same applies to voltage regulators.
- Equipment that regulate voltage may end up operating more often and require more maintenance.
- Modeling of distribution circuits have numerous assumptions, with countless number of scenarios.
- Testing of the models require feedback from actual installations.

- Modeling of distribution circuits require:
- Complete diagram of circuit, including all branch circuits, power equipment, distributed generation and loads.

LO MED.

IS ITIAITI ST

"612 / N.O.

"IS ITIMITI 21"

- Distribution circuit impedance based on conductor quantity, length, size, material, arrangement and spacing
- Model of customer load profile and distributed generation resource.

- Challenges of creating/up-keeping distribution circuit models:
- Time required to collect necessary information.
- Time required to construct model. Model is constantly evolving with new construction, demolition, and customer changes (moving in addition to modifications).

-O MED

ALCIAICI ST

"612 A.O.

'IS ITIMITI AL

- Model must be validated against actual data before it can be accepted.
- Does not take operational load transfers in to consideration.

Circuit Customer Count 2007 – 2,644 2011 – 2,694

🛓 PV - <200kw		
🔺 PV - >=200 - <300kw		
🔺 PV - >=300kw		
PV/Wind - 225kw		
😵 Sync - 730kw		
🐏 Svnc - 615kw		

PV - RESIDENTIAL - <=10kw PV - NON-RESIDENTIAL - <=10kw PV - RESIDENTIAL - >10kw PV- NON-RESIDENTIAL - >10 - <50kw PV - NON-RESIDENTIAL - >=50kw WIND - RESIDENTIAL - All kw WIND - NON-RESIDENTIAL - All kw HYDRO - NON-RESIDENTIAL - >10kw

Distribution Circuit Load

System Issues due to large levels of Renewable Energy

Renewable Energy Impacts To HELCO System

- System Load Reduction
 - Operating traditional units at less efficient levels.
 - Traditional units are forced to deep cycle and/or shut down.
 - Adds challenge to incorporate new renewable energy.
- Challenges in forecasting System Loads
 - It is unknown how much power is generated by the DG at anytime.
 - Errors cause over or under commitment of units.

Renewable Energy Impacts To HELCO System (cont'd)

- Adds another variable when restoring power, and could be very problematic when restoring from an island-wide outage.
- As penetration becomes greater, there may be other unintended consequences (risks).

Generation and Load Low Amount of Must-Take

Generation and Load High Amount of Must-Take

Generation and Load Lower Minimum Loads on Must Run

Generation and Load Variable Winds/Commitment Errors

Load Change over past 5 years

Current Load Profile with estimated PV load added

Extrapolated Load profile with 28.2MW (+65%) PV

Variability of Solar

Unexpected Fast Change in System Load

Frequency Disturbance

Momentary Interruption of Power

At the time.

How to Mitigate Impacts

- Be informed of the risks: Perform a System Impact Study that will at a minimum examine:
 - Fault analysis / System stability
 - Equipment protection coordination
 - System frequency response
 - Unit Cycling Analysis
 - Generation reserve requirements
 - Forecasting strategies

Other Considerations

- DG Standards review/updates.
- Costs for making changes to DG equipment if it becomes necessary.
- Excess energy / Curtailment policies and procedures.

Questions?

Have a nice day!