

RE Integration at High Penetration Levels. RE in Spain

Content

Energy Generation Context in Spain

RE Integration issues

CECRE. Real Time Monitor.

A glance to the future

- ✓ Size: 505,992 km²
- ✓ Population: 40,847,371
- ✓ Currency: Euro
- ✓ GDP: \$1,407 trillion
- ✓ GDP per capita: \$30,412
- ✓ Annual energy: 255,179 GWh

Gnarum

ENERGY GENERATION CONTEXT IN SPAIN. Regulation

Generation mix 2012

No renovable: 📕 Nuclear - 📕 Carbón - 🔛 Ciclo combinado - 🔲 Cogeneración y resto Renovable: 📕 Térmica renovable - 📕 Eólica - <mark>=</mark> Solar fotovoltaica - <mark>=</mark> Hidráulica - <mark>=</mark> Solar térmica

Gnarum

ENERGY GENERATION CONTEXT IN SPAIN

Onarum

ENERGY GENERATION CONTEXT IN SPAIN. Nameplate capacity

Evolution of Wind Installed Capacity (MW)

Evolution of Solar PV Installed Capacity

Evolution of CSP Installed Capacity

Some records in Spain

	Date	Value
Maximum Wind Generation	April 19th, 2012	14,889 MWh
Maximum Coverage Wind	Sept 24th, 2012	64.25%
Maximum CSP Generation	July 10th, 2012	1,363 MWh
Maximum Coverage CSP	July 10th, 2012	4%

ENERGY GENERATION CONTEXT IN SPAIN. Nameplate capacity

Source: National Renewable Energy Action Plans

ENERGY GENERATION CONTEXT IN SPAIN. TSO

REE is Spanish TSO

- Grid Operator: assure power supply
- Transport Grid Design, Planification and Maintenance.

TN	2010
Lines (HV)	18.576
Lines (MV)	17.221
Subs.	3500
Trans.	69.059

TSO must balance generation and consumption

- Stability of grid parameters: frequency, power, etc.
- Unbalance may lead whether to disconnection or to extra generation costs.

Demand

- Varies along time
- Depends on
 - Meteorology
 - Labor/Non-labor day
 - Day of week
 - Special events
 - Random data

RENEWABLE INTEGRATION ISSUES. Demand Variability

Labor or Non-Labor days

Cloudiness

Temperature

Seasons

Special events!

Evolution of energy demand in Spain

Renewable Energy Sources

- Availability depends on natural resource
- Intermittent vs non-intermittent
- Dispatchable vs non-dispatchable

Generation not correlated to demand

Gnarum

Wind energy: typical situations

- Wind ramps -> High gradients of Wind energy fall due to over-speed energy -> Scheduling efforts.
 Wind energy fall due to over-speed protection, wind speed is higher than 25 m/s.
- Forecasts can mitigate the effects of wind variability for System Operation.
- Larger forecast errors imply the use of reserves -> Increasing system costs.

Real Time Grid Operation

Gnarum

CCRE Gnera

Signals sent to CECRE:

C	FCI	RF	

<u>P < = 10 MW</u>

Active Power

<u>P > 10 MW</u>

- Active Power
- Reactive Power
- Connection Status
- Voltage

Wind Farms

- Wind speed
- Temperature
- Signals are sent every 12 seconds
- P>10, Control Signals to limit to a Max Operation Power in 15 minutes.

A glance to the future

"A Smart Grid is an electricity network that can intelligently integrate the actions of all users connected to it – generators, consumers and those that do both – in order to efficiently deliver sustainable, economic and secure electricity supplies"

- FORECAST SMART GRID INVESTMENTS €56 billion by 2020
- FUNDING FOR SMART GRID DEVELOPMENT
 €384 million
- NUMBER OF SMART METERS DEPLOYED AND/OR PLANNED
 45 million installed
 240 million by 2020

- FORECAST SMART GRID INVESTMENTS €71 billion
- FUNDING FOR SMART GRID DEVELOPMENT
 €5,1 billion
- NUMBER OF SMART METERS DEPLOYED AND/OR PLANNED
 360 million installed by 2030

- FUNDING FOR SMART GRID DEVELOPMENT
 €4,9 billion
- NUMBER OF SMART METERS DEPLOYED AND/OR PLANNED
 8 million installed
 60 million by 2030

SMART GRID PROJECTS IN US MAP

- Supported by DOE seeks transform electrical distribution system, integrating a system of mix distributed resources and including renewables, improving efficiency reliability achieving Zero Energy District
- 30 distributed generation, 5 customer locations, 3.5 MW
- Will prove the effectiveness of integrating multiple distributed energy resources with advanced controls and communications
- Integrates PV, Biodiesel-fuel, energy storage along AMI
- 50MW

CITY OF FORT COLLINS

BEACH CITIES MICROGRID BY SAN DIEGO GAS&ELECTRIC

- Will integrate AMI as a home portal for demand response
- Home automation for energy conservation
- Optimal dispatch of distributed generation, storage, and loads in the distribution system
- Controls to make the distribution system a dispatchable entity to collaborate with other entities in the bulk grid.

DISTRIBUTED MANAGEMENT SYSTEM, UNIVERSITY OF HAWAII

- DOE demonstration project. Sophisticated system that responded to simple instructions set in place by a consumer in his or her preference profile
- Consumers saved 10% on their bills
- Peak of load reduced 15%

WASHINGTON OLYMPIC PENINSULA

SMART GRID PROJECTS IN EU MAP

<u>G</u>narum

- Connects small producers, storage and controllable loads (smart meters) through remote terminals units with a Control Center
- Platform connected components: 11 MW intermittent power, 300 MW controllable power
- Domestic consumer has access to variable tariffs

- Electric vehicle integration project
- 50 customers and 100 recharging stations (50 public stations and 50 home stations) pursues an open access approach..
- Electric vehicles are used as storage devices to provide ancillary services in presence of a high level of

WEB2ENERGY PROJECT

MINI-BERLIN PROJECT

- Develops embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable active participation in the future smart grid environment
- Integrate energy brokerage module

- 5 countries participating
- 11 companies (small, large, universities)
- 4 demonstration locations
- €6,3 million budget
- 20% less energy needed
- 20% savings

ENCOURAGE PROJECT

Thank, You!

www.gnarum.com