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What is LCA?

Life-Cycle Chain

Raw material acquisition
Processing/Manufacturing
Input Flows l

Transportation/Distribution
|

Energy

Raw Materials
Use/Reuse/Maintenance

!

Recycle

}

Waste Management

12/2/2012 Bailis — ESMAP Solid Biomass

Useful Products

Main Product(s)

Co-Products

Emissions

Atmosphere
Soil

Water

1. Goal and
scope
definition

2. Life cycle
inventory

3. Impact
assessment
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LCA methodologies

1. Goal and scope definition:

defines the system boundary and
functional unit and level of detail
required for input data.

An example from my research:

¢ Goal: compare environmental impacts of
producing charcoal using hot-tail kilns, as is
current practice, and using container kilns
with pyrolysis gases utilized for cogeneration

What happens when you add cogeneration to
a traditional charcoal production system?

e Boundary: nursery to plantation-gate (prior
land use not included)

¢ Functional Unit: 1 ton of carbon in charcoal
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LCA methodologies

2. Life cycle inventory

Cataloging material flows along all

stages of production:

e Allinput/output (I/0) data to
define the system

¢ Sources of data include:
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direct observation

life cycle inventory (LCI)
databases

previous/similar analyses

b

Life cycle materials and processes Units 2 Per hectare Per Functional Unit FU)
Nursery stage
Water liters 10667 10667 75.6 57.4
Electricity kwh 5.24 5.24 0.037 0.028]
KCl kg-K,0 26 26 0.019 0.014]
Mono-ammonium phosphate (as N) kg-N 0.004 0.004 3.0E-05 2.3E-05
Mono-ammonium phosphate (as P,05) kg-P,05 0.021 0.021 1.5E-04 1.1E-04,
CaNO, ke-N 0.61 0.61 4.3-03 3.3E-03
Blend of NPK fertilizers (asN)® kg-N 0.062 0.062 4.4E-04 3.4E-04
0 (as P,0) kg-P,05 0.31 031 2.2E-03 1.7€-03
" (as K,0) keg-K,0 0.062 0.062 4.4E-04 3.4E-04
(NH,),S0, kg-N 0.13 0.13 9.2E-04 7.0E-04
MgSO, kg 4.2 4.2 0.030 0.022
Sowing and management stage
Water for irrigation liters 15,000 15,000 106 81
Water transpired by trees liters 262,800,000 262,800,000 1.9E6 1.4E6
Fuel (diesel) liters 348 348 25 1.9
Glyphosate (applied for new seedlings) liters 10 10 0.07 0.05
Blend of NPK fertilizers (as N) © kg-N 0.19 0.19 0.001 0.001
0 (as P,0) kg-P,05 0.39 0.39 0.003 0.002
" (as K,0) keg-K,0 0.17 0.17 0.001 0.001
50% KCl (plus micronutrients) keg-K,0 310 310 22 1.7
Tractor ] 0.00057 0.00057 0.0000041 0.0000031
Harvesting and transport of feedstock
Fuel (diesel) liters 1695 1695 12.0 9.1
Feller/buncher P 3.3E-04 3.3E-04 2.3E-06 1.8E-06
Skidder ] 3.3E-04 3.3E-04 2.3E-06 1.8E-06,
Cutter/delimber P 3.3E-04 3.3E-04 2.3E-06 1.8E-06
Loader [ 3.3E-04 3.3E-04 2.3E-06 1.8E-06
Kiln infrastructure
Bricks tons 0.67 = 0.0047 =
Mortar tons 2.14 = 0.015 =
Steel tons - 0.17 - 0.001
Pyrolysis and cogeneration inputs
Fuel (diesel) liters 1846 1420 13.1 7.6
Lorry - 16t P 0.0060 0.0060 0.000042 0.000032
Water (for cooling in cogen units)? m? NA NA 0 0/1.6/3.7/6.7
Electricity demand © kwh NA NA 0 52/52/64/97
Pyrolysis and cogeneration outputs
Charcoal output tons 192 240 1.4 13
Charcoal-carbon output tons 142 187 1.0 1.0
Electricity to grid © kWh NA NA 0 0/274/613/1122
Tar® kg 0 0/220/0/0]
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LCA methodologies

3. Impact assessment:
Converts raw input/output data into

meaningful measurements S) View method 'TRACI 2 V3.03'
| Characterizati
* May be assessed as raw data, Genera ]
. K ) A Impact category Junit
intermediate, or final impact Global warming kgCozeq
. . I"[acidification H+ moles eq
e Example: climate impacts [[Cardnogenics ey
_ . [non carcinogenics kg toluen eq
Raw data: tons of CO,, CH,, and ey s e
NZO :Euh'ophltahon kgNeq
. . . [Ozone depletion kg CFC-11eq
— Intermediate impact: aggregate MEcotoxicity 2,406
global warming pot’l (GWP) [Jsmog gNOxeq

— Final impact: temperature increase
or physical/economic damages
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LCA methodologies

4. Interpretation: an assessment of the outcomes of the
inventory analysis and impact assessment, including
sensitivities.
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LCA methodologies

e Additional considerations:
— Treatment of co-products

* Most bioenergy systems multiple products
* How do we allocate impacts?

— Temporality (past, current and future impacts)
* Attributional and Consequential LCA

— Land Use Change (LUC)
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Bioenergy LCAs— strong focus on GHGs
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emissions and electricity output associated with coal). From IPCC SSREN.
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...in comparison to fossil options
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Note: Based on current state of technologies. Ranges reflect variations in performance as reported in literature. Possible emissions from
land-use change are not included here.

Source: Based on Cherubini et al., 2009; IPCC, 2011.
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Example — Innovation in Brazilian
Charcoal Production

e Brazil is the world’s
largest charcoal user

* >80% used by the

metallurgical
industries

— source of carbon and
energy

“Rabo Quente” kilns - 70% of production
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Brazilian Charcoal Production

Energy sources utilized in Brazil’s metallurgical industries from 1970 to 2010

Mtoe
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The majority of feedstock originates
from plantations, but...

Charcoal production in Brazil by source of wood (1990-2010)
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Source: IBGE, 2012
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Charcoal production by state in 2010
(IBGE, 2012)
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There are also large energy losses...

Energy flows in charcoal production in Minas Gerais, Brazil (1978 to 2008)
as lump charcoal, other materials (charcoal fines and tar), and losses
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Miranda et al. 2012
12/2/2012 Bailis — ESMAP Solid Biomass

16

12/2/2012



...and emissions

I L Eco,
CICH,
Single d kiln in Thailand

Ingle arum Kiin in ailan DNzo

Round brick kiln in Brazil

Beehive kiln in Brazil

Mud beehive Kiln in Thailand

Improved kilns

Brick beehive kiln in Thailand

Rectangular metal kiln in Brazil
EM kiln in Zambia

EM kiln in Kenya

EM kilns

EM kiln in W. Africa

EM kiln in Thailand

300 600 900
Kilograms of carbon in CO, equivalent units (using 100 yr GWP) per ton of charcoal produced

Emissions measured in traditional earthmound (EM) kilns and a variety of
improved kilns reported in the literature showing emissions of each GHG
weighted by its 100-year global warming potential (Bailis 2009)
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Alternative technologies

DPC charcoal reactor g
flaring non-
condensable gases

. CML charcoal plant
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Rima’s conce‘pt (V|Iela 2010)

Ciclo Continuo

Carbonizacéao
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Carregamento

(3 horas) Descarregamento (1 hora)
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Rima’s concept (Vilela, 2010)
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The LCA

1. Raw Material 2. Raw Material 3. Material Production 4. Product Transport 5. Product Use

Acquisition Transport and/or Transformation

Path 1: Rabo Quente kiln
. |

Metal refining

Nursery Plantation

Path 2: Container kilns with
gas capture and cogeneration

= e e e e e

Mineral Coke supply chain
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Results - GHGs
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Results — water use

Approx range of water use from 1 t-C in mineral coke (from SimaPro)
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Results — other impacts
150
M Hot tail kiln
100
B No cogeneration
50
[ Cogen w/Gas, Tar
displacement
0 4
M Cogen w/Gas+Tar
-50
[ Cogen
w/Gas+Tar+WW
-100
Ozone Depletion Photochem. Acidification (ACID) Eutrophication (EUT)|
Potential (ODP) Oxidation (PCO)
(mg CFC-11 eq) (kg C2H4 eq) (kg SO2 eq) (kg PO4 eq)x10
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Pt

Aggregating results???

16
14
Radioactive waste
12 Bulk waste
10 mmm Human toxicity
8 B Eutrophication
. mmm Acidification
mmm Ozone formation
4
mmm Ozone depletion
2 mm Global warming 100a
0 1 ~O=Total
-2 T T T T ]
Brick - all processes Metal - all processes, Metal - all processes, Metal - all processes, Metal - all processes,
Augl2 gas cogen + tar copro gas and tar cogen no co-products gas tar and ww
Augl2 Augl2 Augl2 cogen Augl2
Comparing product stages;
Method: EDIP 2003 V1.03 / Default / Single score
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Concluding thoughts

e LCA is a powerful tool to compare technological
options
— But proceed with caution!

* More than just GHGs

— When we introduce multiple impacts, comparing and/or
aggregating is risky

— Only meaningful if local context is taken into consideration
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