PROGRAM MODULE 8 | BIOENERGY Life-cycle Analysis of Woody Biomass Energy

Rob Bailis
Associate Professor
Yale School of Forestry and Env. Studies
04 December 2012

Overview

- What is LCA?
- How is it done?
- Key concepts
- Examples
 - LCAs for bioenergy
 - Charcoal in Brazil

12/2/2012

Bailis – ESMAP Solid Biomass

 Goal and scope definition: defines the <u>system boundary</u> and <u>functional unit</u> and level of detail required for input data.

An example from my research:

 Goal: compare environmental impacts of producing charcoal using hot-tail kilns, as is current practice, and using container kilns with pyrolysis gases utilized for cogeneration

What happens when you add cogeneration to a traditional charcoal production system?

- **Boundary:** nursery to plantation-gate (prior land use not included)
- Functional Unit: 1 ton of carbon in charcoal

APPLICATION OF THE PROPERTY OF

2. Life cycle inventory

Cataloging material flows along all stages of production:

- All input/output (I/O) data to define the system
- Sources of data include:
 - direct observation
 - life cycle inventory (LCI) databases
 - previous/similar analyses

Life cycle materials and processes	Units ^a	Per hectar	re	Per Functional	l Unit (FU)
Nursery stage					
Water	liters	10667	10667	75.6	57.
Electricity	kWh	5.24	5.24	0.037	0.02
KCI	kg-K ₂ O	2.6	2.6	0.019	0.01
Mono-ammonium phosphate (as N)	kg-N	0.004	0.004	3.0E-05	2.3E-0
Mono-ammonium phosphate (as P ₂ O ₅)	kg-P ₂ O ₅	0.021	0.021	1.5E-04	1.1E-0
CaNO ₃	kg-N	0.61	0.61	4.3E-03	3.3E-0
Blend of NPK fertilizers (as N) b	kg-N	0.062	0.062	4.4E-04	3.4E-0
" (as P ₂ O ₅)	kg-P ₂ O ₅	0.31	0.31	2.2E-03	1.7E-0
" (as K ₂ O)	kg-K ₂ O	0.062	0.062	4.4E-04	3.4E-0
$(NH_4)_2SO_4$	kg-N	0.13	0.13	9.2E-04	7.0E-0
MgSO ₄	kg	4.2	4.2	0.030	0.02
Sowing and management stage					
Water for irrigation	liters	15,000	15,000	106	8
Water transpired by trees	liters	262,800,000	262,800,000	1.9E6	1.4E
Fuel (diesel)	liters	348	348	2.5	1.
Glyphosate (applied for new seedlings)	liters	10	10	0.07	0.0
Blend of NPK fertilizers (as N) ^c	kg-N	0.19	0.19	0.001	0.00
" (as P ₂ O ₅)	kg-P ₂ O ₅	0.39	0.39	0.003	0.00
" (as K ₂ O)	kg-K ₂ O	0.17	0.17	0.001	0.00
50% KCI (plus micronutrients)	kg-K ₂ O	310	310	2.2	1.
Tractor	р	0.00057	0.00057	0.0000041	0.000003
Harvesting and transport of feedstock					
Fuel (diesel)	liters	1695	1695	12.0	9.
Feller/buncher	p	3.3E-04	3.3E-04	2.3E-06	1.8E-0
Skidder	p	3.3E-04	3.3E-04	2.3E-06	1.8E-0
Cutter/delimber	p	3.3E-04	3.3E-04	2.3E-06	1.8E-0
Loader	p	3.3E-04	3.3E-04	2.3E-06	1.8E-0
Kiln infrastructure					
Bricks	tons	0.67	-	0.0047	
Mortar	tons	2.14	-	0.015	
Steel	tons		0.17		0.00
Pyrolysis and cogeneration inputs					
Fuel (diesel)	liters	1846	1420	13.1	7.
Lorry - 16t	p	0.0060	0.0060	0.000042	0.00003
Water (for cooling in cogen units)d	m³	NA	NA	0	0/1.6/3.7/6.
Electricity demand ^c	kWh	NA	NA	0	52/52/64/9
Pyrolysis and cogeneration outputs					
Charcoal output	tons	192	240	1.4	1.
Charcoal-carbon output	tons	142	187	1.0	1.
Electricity to grid ^c	kWh	NA	NA	0	0/274/613/112
Tar c	kg			0	0/220/0/

3. Impact assessment:

Converts raw input/output data into meaningful measurements

- May be assessed as raw data, intermediate, or final impact
- Example: climate impacts
 - Raw data: tons of $\mathrm{CO_2}$, $\mathrm{CH_4}$, and $\mathrm{N_2O}$
 - Intermediate impact: aggregate global warming pot'l (GWP)
 - Final impact: temperature increase or physical/economic damages

12/2/2012

LCA methodologies

4. Interpretation: an assessment of the outcomes of the inventory analysis and impact assessment, including sensitivities.

- Additional considerations:
 - Treatment of co-products
 - Most bioenergy systems multiple products
 - How do we allocate impacts?
 - Temporality (past, current and future impacts)
 - Attributional and Consequential LCA
 - Land Use Change (LUC)

Example – Innovation in Brazilian Charcoal Production

- Brazil is the world's largest charcoal user
- > 80% used by the metallurgical industries
 - source of carbon and energy

12/2/2012

Bailis – ESMAP Solid Biomass

Concluding thoughts

- LCA is a powerful tool to compare technological options
 - But proceed with caution!
- More than just GHGs
 - When we introduce multiple impacts, comparing and/or aggregating is risky
 - Only meaningful if local context is taken into consideration

12/2/2012 Bailis – ESMAP Solid Biomass

26