

01 February 2020 08:00 - 09:30 EST 14:00 - 15:30 CET

BATTERY SYSTEM

G-LOBAL BATTERY ALLIANCE

O

5

BATTERIES POWERING SUSTAINABLE DEVELOPMENT

BATTERY SYSTEM

D

=0

G-LOBAL BATTERY ALLIANCE

O

O

0

BATTERIES POWERING SUSTAINABLE DEVELOPMENT

Impact of a sustainable value chain in 2030 – unattainable with business as usual

1 Sustainable Development Goals

G-

Batteries enable **emission reductions** in transport and power – and help **couple the two sectors**

A circular battery value chain to couple transport and power sectors by 2030 globally, foundation for further sources of energy post 2030 (e.g., hydrogen, power to liquid) to stay below 2°C Paris Agreement target

GLOBAL BATTERY

ALLIANCE

GBA's circular battery vision shows batteries can deliver multiple SDGs beyond energy access, if recycling and repurposing markets scale up

CSource: Globally Battery Alliance, 2019; S&P Global, 2020; Global Battery Alliance, 2019; IEA, 2020, World Energy Outlook

GLOBAL BATTERY

ALLIANCE

Battery Repurposing: Opportunities and Challenges

BATTERY SYSTEM

 \mathcal{D}

G-LOBAL BATTERY ALLIANCE

O

5

 \cap

BATTERIES POWERING SUSTAINABLE DEVELOPMENT Globally, businesses are emerging within each stage of the EV battery repurposing supply chain

Notes: State of health refers to information about the capacity, voltage, self-discharge... of a battery, relative to its ideal condition. Battery diagnostic /

Opportunities for repurposing emerge from the supply of retired EV batteries, ~60 GW per year in 2030 - almost 2x Africa's SDG 7 battery market

Notes: Sensitivity bars signify variance between McKinsey base case until 2025 & Circular Energy for 2030 and max. and min. of McKinsey, Circular Energy, Berylls Strategy Advisors and IEA SPS & SDS projections. Sub-Saharan Africa supply of batteries projected from DNV GL, 2020. CAGR = Compounded Annual Growth Rate. Sources: IEA, 2019, 2020; McKinsey, 2019; Circular Energy, 2019; Berylls Strategy Advisors, 2018; DNV GL, 2020; BNEF, 2020

Costs remain a key challenge to second-life markets, as most repurposing costs are highly uncertain and unreflective of energy access applications

Modelled estimates suggest second-life batteries could be cost-competitive with first-life batteries

	costs by 2030	itut eX. :vivideconomics	

Institut für angewandte Ökologie

Indirect costs includes taxes, insurance and administrative costs.

Costs remain a key challenge to second-life markets, as most repurposing costs are highly uncertain and unreflective of energy access applications

Modelled estimates suggest second-life batteries could

But, multiple sources of uncertainty affect real-world competitiveness to 2030:

Cost	Sources of uncertainty	Likely pathways	
Purchasing used modules	Cost of alternative end-of life options	uncertain costs of recycling li-ion	
	Cost of first-life batteries	declining costs of li-ion chemistries	
Re- nanufacturing process	First life battery information	state of health and use data improves	
	Automation of disassembly and testing	standardisation of EV batteries	
Transport and labour	Costs of certifying batteries (before and/or after re- manufacturing)	creation of certified quality standards	
	Location of the remanufacturing process	scale of the EV market in Africa	
Increases of Decreases of	costs by 2030	itut e.X. Indie Ökologie i Ecology	

Decreases costs by 2030

Under a model of EV industry coordination and investment, second-life battery costs could decrease by as much as [to be determined] % by 2030

We consider three potential cost pathways for second life batteries to 2030, each of which is affected by the key cost levers:

(1) First-life battery design and data sharing will affect re-manufacturing costs (2) Location of battery supply chain will affect labour and transport costs Scenario A: Coordinated & OECD-led Scenario B: Fragmented & OECD-led OEMS invest in BMS* and design for OEMs fail to invest in BMS or design for second life. Modules are rere-purposing. Re-manufacturing occurs manufactured in OECD markets before in OECD markets, as in Scenario A. export to Africa for assembly and use.

Scenario C: Small scale & Africa-led Batteries from local EV and stationary applications meet small scale local battery demand. Low technology levels.

Notes: OEMS refers to Original equipment manufacturers (such as vehicle band battery manufacturers); BMS stands for battery management systems.

Safety and performance concerns remain key challenges to market growth however, even as second life batteries become cost competitive

CHALLENGE

POOR MARKET OUTCOMES

Low consumer appetite

Strong political opposition

Limited industrial activity

Safety & Performance remain critical barriers to market uptake ala v

Weak regulation

UNDERLYING CAUSES

- no second-life certification
- unclear liabilities during repurposing & second-life
- no supplier warranties

lack of performance data under local operating conditions

Negative past experiences

- first life battery failures*
- hazardous waste dumping
- accidents in battery handling facilities

POSSIBLE SOLUTIONS / OPPORTUNITIES

Policies developed: EPR systems, take back systems etc

Working with distributors

Quota on recyclced content for new products

Declaration of % of recycled content from producers

Collection targets towards manufacturers

Technology: increased recycling efficiency

Africa's end-of-life management is dominated by lead acid recycling, with limited lithium-ion recycling or repurposing

:vivideconomics

Collection and recycling of lithium-ion batteries is almost non-existent to date

MARKET STATUS

Electronics applications

- Volumes of lithium-ion mostly from notebooks and mobile phones
- No established recycling in Africa
- Net material values ~ 0-1000 €/t depending on cobalt price
- Ambitious safety requirements for transport, storage and shipments
- Indicative shipment costs ~ 500 €/t

Recycling is currently not economically viable

Energy access applications:

- EoL volumes are negligible
- Li-ion battery chemistries (mostly LFP) are unattractive for recyclers (treatment costs > revenues from material recovery)
- Recycling is even less viable
- A switch to repurposed EV batteries will not significantly change this dilemma

ISSUES & IMPACT

- Without changed framework conditions, Li-ion batteries from energy access projects will not be collected and recycled.
- The most likely fate is dumping (either on existing landfills, on uncontrolled dumpsites, or openly burned together with other waste)
- Safety issues, pollution problems, loss of battery resources

Closing the Loop on Energy Access: Analytical Study

Key challenges to lithium-ion battery recycling are low material values and high logistics costs

Recommended recycling option:

- Export to foreign recyclers
- Properly packaging (e.g. in UN-rated barrels and embedded in sand)
- Prior-informed-consent procedure (according to the Basel Convention)

Pilot exercise by Hinckley and Closing the Loop:

- 5t of batteries shipped from Nigeria to Belgium
- Initial cost: ~ 70,000 € (including start-up costs)
- Best case scenario costs: ~ 7,000 €
- Revenue from materials: ~ 2,500 €

BATTERY SYSTEM

D

=0

 \bigcirc

GLOBAL BATTERY ALLIANCE

O

O

0

BATTERIES POWERING SUSTAINABLE DEVELOPMENT

Assumptions and data sources for the market sizing model

Scenario	Name	Description	Source	Notes
CD; F	Niero level			 Impacts of COVID on sales are not taken into account Sales in SSA are deduced from global sales Storage capacity comes from previous VE analysis.
residential	solar home systems	Market Trends Report 2020	 Use the Global Electrification Platform (GEP) to calculate the number of people who will use pico lamps or SHSs for electricity in 2030. Storage capacity comes from previous VE analysis. 	
CD; F; A	Micro-level productive use	Number of solar water pumps, small agricultural processing machinery, and coolers/freezers	Lighting Global, PULSE Market Study	 Storage requirements from expert analysis. Storage demand is the same under the Market Forecast and Full Energy Access scenarios.
CD	Minigrids	Capacity used by consumers on mostly off-grid minigrids.	SE4All, Mini-grids market report 2020	• The storage to power ratio in minigrids is based on previous VE analysis.
F; A	Minigrids	Capacity used by consumers on mostly off-grid minigrids.	IEA, 2017, Energy access outlook	 The Market Forecast figure is based on the IEA's "Stated Policies" scenario The Full Energy access figure is based on the IEA's "Energy Access" scenario. The storage to power ratio in minigrids is based on previous VE analysis.
CD; F	Utility- scale	Point estimates of stationary utility-scale storage in 2020 and 2030	IEA, commentary on storage and flexibility	One-off data points.
A	Utility- scale	Number of people connected to the grid in 2030 under least-cost electrification scenarios.	Global Electrification Platform; IEA data, 2018; IEA,2017, <i>Energy Access Outlook;</i> Carbon Tracker, 2018	• The number of people connected to the grid in 2030 is multiplied by a household's electricity consumption, multiplied by the share of electricity generation from VREs and a factor for storage per VRE generation.

CD: Current Demand. F: market Forecast. A: full energy Access. VE: Vivid Economics. SSA: Sub-Saharan Africa. VRE: Variable Renewable Energy.

GBA vision: the potential of a sustainable battery value chain in 2030

Establishing a circular battery value chain is a major driver for achieving the Paris Agreement

30% emission reduction in the transport and power sector **50%** emission reduction in the battery value chain

Transforming the economy in the value chain creates new jobs and economic value

10 m additional jobs **150 bn** in economic value generated in a responsible and just value chain **35%** increase in battery demand

Safeguarding human rights and economic development is in line with the UN SDGs¹

600 m additional people with access to electricity, reducing the gap of people without electricity by 70%

Ensuring safe working conditions, fostering anti-corruption practice and eliminating child/forced labor

Additional impact of a sustainable value chain in 2030 compared to business as usual – unattainable with business as usual

1 Sustainable Development Goals

The impact of the global battery industry spans across all United Nation Sustainable Development Goals

... and provide access to clean energy, create economic value, and jobs

~850M people of which lack access to electricity world wide, 67% in Sub- Saharan Africa (2017)

Batteries, in battery-solar systems and as part of microgrids and off-grid solutions, enable affordable energy access for around 600 million people, reducing the gap of households without electricity by **70%**.

Batteries contribute to the UN SDGs directly and indirectly. They enable decentralized and off-grid energy solutions. Bringing energy ton people without access to electricity today can increase productivity, improve livelihoods and improve health on a large scale.

Battery industry created ~\$40B economic value in 2018, and grew annually at ~15% last decade

We estimate that $\sim 2N$ people are employed in the battery value chain, of which >1.6M work in developing countries (2018)

Addressable United Nations Sustainable Development Goals

Compared to today, global battery demand is expected to grow by a factor of ~14 to reach ~2,600 in 2030

1

GLOBAL

BATTERY

ALLIANCE

12018 and 2030 battery demand varies by region and application –Image: China and electric mobility expected to be the largest markets in 2030

##x growth factor '18 to '30 () 250 GWh/year

Global battery demand by application and region

GWh in 2030, base case

The Li-ion battery value chain provides revenue opportunities of \$300 billion by 2030 – cell manufacturing comprises the largest share

SOURCE: McKinsey

GLOBAL BATTERY

ALLIANCE

Target case lifecycle EV emissions can improve significantly due to circular levers and more renewable energy deployment across the value chain

Lifecyle GHG emissions for medium size (C/D) vehicles in China, g/km1 Battery Usage Chassis 202.1 -21% 159.5 8.3 -51% 23.8 2.2 2.0 0.5 0.5 22.4 99.8 ICE ΕV Renewables Next-gen Shared Vehicle-to-grid Reuse/ Recycling Clean battery Target case mobility second life 2030 batteries production Base case 2030

1 Key assumptions - vehicle lifetime: 200,000 km = 13 years x 15,000 km p.a.; BEV energy consumption (kWh/km): 0.18 (2018), 0.16 (2030); battery sizes: 50 (2018), 60 (2030); battery production emissions (kgCO2e/kWh): 138 (2018), 71 (2030); electricity carbon intensity (gCO2e/kWh): 655 (2018), 411 (2030); ICE use emissions (gCO2e/kWh): 146 (2018), 116 (2030); emission factor of fuel production: 21%

SOURCE: McKinsey, SYSTEMIQ

GLOBAL BATTERY

ALLIANCE

3 The target case levers contribute to further battery cost reductions 23% in 2030 and, therefore, drive adoption even further

Example passenger car, average cost, in USD/kWh

A variety of levers address challenges and support achievement of the target state – Overview of circular economy levers for batteries

GLOBAL

BATTERY ALLIANCE

Acronym	Cathode (+)	Anode (-)	Examples of Evs using this technology	Utility Storage	
NMC	nickel manganese cobalt	Graphite	Renault, VW, Honda, Chevrolet	Yes	
LFP	lithium iron phosphate	Graphite	BYD, Tesla	Yes	
LMO	lithium ion manganese oxide	Graphite			
NCA	nickel cobalt aluminum	Graphite	Tesla		
LCO	lithium cobalt oxide	Graphite			ithium Ion C
Blended chemistries			Nissa, Ford, Mitsubishi	- NNC	En
				Cell 5	ize

Global Recycling Capacity

G-

COMMITTED TO IMPROVING THE STATE OF THE WORLD

A World Economic Forum initiative.

GLOBAL BATTERY ALLIANCE

BATTERIES POWERING SUSTAINABLE DEVELOPMENT

Mathy Stanislaus

Interim Director, Global Battery Alliance Mathy.stanislaus@ce-advisor.com

Jonathan Eckart

Project Lead, Global Battery Alliance, Global Leadership Fellow, World Economic Forum jonathan.eckart@weforum.org

Eleni Kemene

Project Specialist, Global Battery Alliance, World Economic Forum Eleni.Kemene@weforum.org