Solid State Battery Technology

WORLD BANK – ESMAP Stakeholders Meeting
Pretoria, South Africa
January 21, 2020
WHY SOLID STATE TECHNOLOGY?

1. **Cost Reduction** in the long run compared to current technologies
 - Savings on the anode and separator elements

2. **Higher Energy Density**
 - Longer duration stationary applications; longer range for mobility

3. **Safety**
1. There is no liquid or gel
 - The liquid or gel electrolyte is replaced by a ‘solid-state’ layer
 - Electrolyte could be ceramic, glass, or plastic-like polymer

2. Solid electrolyte allows for *higher density*
 - More energy contained in smaller space/area

3. Traditionally challenging to manufacture

4. Growing installation footprint today → *Big potential for hot climates, high tolerance to ambient heat without need of cooling systems*
MAIN CHALLENGES OF TOMORROW’S BATTERY

1) Cost
- Raw material costs (re-use via recycling)
- Continuous Process
- Suppression of formation of migrating ions (SEI)
- Scaling

2) Safety
- 0 risk of fire
- 0 risk of explosion
- 0 risk of leakage
- 0 risk of gas emissions

3) Density
- Long energy delivery
- Autonomy/range required for electro mobility

4) Service Life
- Calendar life > 15 years
- Cyclability depending on applications (> 4000 for daily use; > 1500 for EV)
- Constant performance: no loss of capacity

5) Traceability / Ethical Sourcing
- Responsible extraction
- Full material traceability

6) Life Cycle
- 100% recyclable
- Close loop material reuse

An R&D priority shared by all manufacturers: the solid battery
SOLID STATE TECHNOLOGY

Anode: Lithium foil

Electrolyte: PEO + Lithium salts

Cathode: LiFePO$_4$

\[
\text{Li}_1-x\text{FePO}_4 + x\text{Li}^+ + x\text{e}^-
\]

Current collector: Aluminum foil

Cathode: LiFePO$_4$

\[
\text{Li}_{1-x}\text{FePO}_4 + x\text{Li}^+ + x\text{e}^-
\]

Electrolyte: PEO + Lithium salts

BENEFITS

SAFETY
- No thermal runaway

ROBUST
- Suitable for hot climates → *Africa, South Asia, Tropical Islands*
- No cooling needed

DENSITY
- 230 Wh/kg
- 360 Wh/L

PERFORMANCE

- Service Life > **12 years**
- Cyclability > **4000 cycles**
- Constant Capacity
- Long Duration (>C/2)

SUSTAINABILITY
- No Cobalt / Nickel
- No Rare Earths
- No Solvents

LIMITATIONS
- Not suitable for power applications (nominal discharge C/2)
- Electrolyte conductivity from 60 °C
Extrusion of ultra thin films used as anodes, electrolytes and cathodes

Manufacturing of cells by stacking of films to create modules

Assembly of modules to create packs (electromobility) or a set of DC cabinets for stationary applications
Thank you!

Francisco DaSilva Passos
francisco.dasilvapassos@blue-solutions.com

Adrian Tylim
adrian.tylim@blue-solutions.com
Additional Notes
MICROGRIDS USING SOLID-STATE BATTERY TECHNOLOGY

LMP IS THE #1 OF STORAGE TECHNOLOGY IN AFRICA WITH MORE THAN 7 MWH ALREADY OPERATIONAL AND MORE THAN 9 MWH UNDER DEVELOPMENT
TECHNICAL CHALLENGES IN SOLID STATE TECHNOLOGY

1. **ANODE**
 - Mastery of manufacturing processes for Lithium Metal films:
 - Homogeneous thickness of only a few µm
 - Smooth surface
 - Purity
 - Interface compatibility with electrolyte

2. **ELECTROLYTE**
 - Solid membrane w/ high mechanical resistance
 - Prevention of dendrite formation
 - Good conductivity
 - Cost Control and density aspects compared to a liquid electrolyte
 - Capacity to withstand voltage

3. **CATHODE**
 - Use of high potential materials
 - Interface compatibility with electrolyte

4. **CELL**
 - Mastery of significantly different manufacturing process
 - Continuous Manufacturing Process
 - Absence of Solvents
Solid-State Cells Manufacturing