Eos Energy Storage

Long-duration energy storage and its applicability to developing countries

eos

leos

November 2020 Balki Iyer – Chief Commercial Officer

Eos. Positively ingenious.

Eos Energy Storage System

Energy storage serves as a central catalyst for modernizing and creating a more reliable and resilient, efficient, sustainable, and affordable grid.

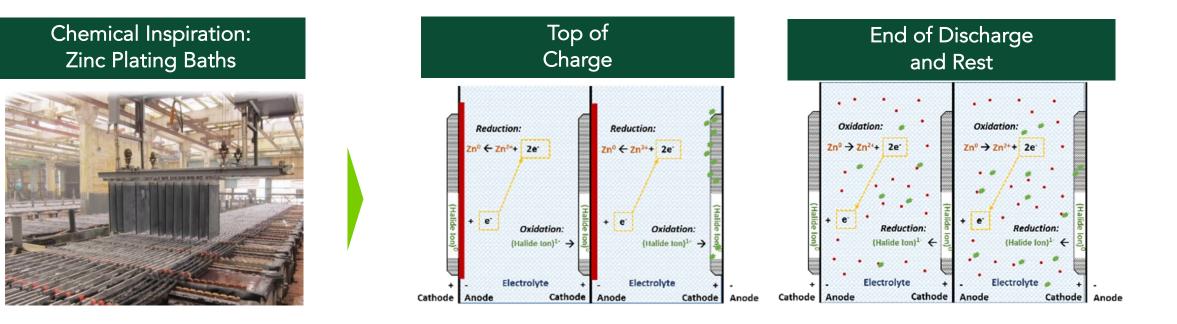
Eos is powering the clean energy renaissance with a positively ingenious energy storage solution

- Global energy storage market estimated to grow 20% CAGR over 20 years
- Eos technology is optimized for the 4+
 hour storage market
- Zinc electrolyte-based chemistry; No rare earth minerals required
- Fully recyclable, non-flammable, and non-toxic
- Made in the USA

Eos. Positively ingenious.

Energy Market Shifting to Long Duration

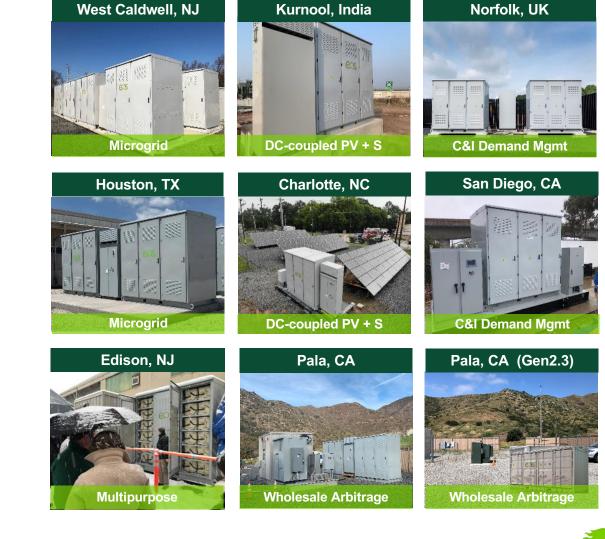
Storage solution optimized for the critical 4+ hour global storage market; ideal for renewable plus storage and grid congestion applications


Market Segments	Application	Value Proposition	Market Size	Pipeline Clients
Renewables	 Co-location of battery storage with renewable generation assets 	 Shift renewable power to when the grid needs it most Avoid curtailment and enable higher utilization of clean power assets 	 34,159 MWh CAGR +35% vs. 2020 	
Utility	 T&D deferral and Grid Resilience Shaving peak loads and replace aging peaker generation assets 	 Ability to defer/mitigate infrastructure upgrade costs and minimize outages Provides easy to deploy generation capacity to load centers where it is needed most Store inexpensive electricity for use during peak hours 	 28,787 MWh CAGR +33% vs. 2020 	PSEGExampleConEdisonInternational electric powerCarson Cogeneration Company, LP
Commercial & Industrial	 Behind-the-meter energy management solutions at large commercial or industrial sites Microgrid resiliency and peak shifting 	 Shift peak demand needs to reduce electricity costs Microgrid resiliency/backup power Security 	 15,405 MWh CAGR +31% vs. 2020 	

Eos technology enables its customers to advance their own sustainability, resiliency and low-carbon goals

Eos Chemistry Overview

- ✓ Reversible zinc plating and halide redox with large aqueous electrolyte pool in a sealed bipolar battery
- ✓ Zn and Zn2+ accumulate at the anode Ti current collector
- $\checkmark\,$ Ha and Ha- accumulate at the cathode current collector

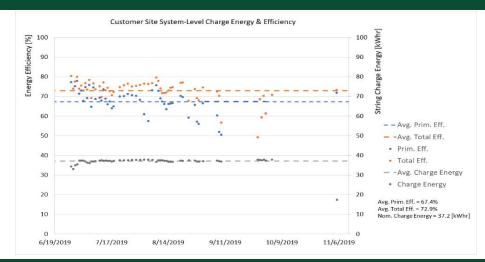


To specifically design and build a battery for the utility; combining known chemistries and striving to simplify design, manufacturing, and system requirements

Global Deployments with Industry Leaders

n

		Announce	d Projects	
	Project	Status	Use Case	Location
		Operating	Multi	
	Large Global IPP	Complete	Solar Shifting	۲
	O PSEG	Operating	FR & Microgrid	
Gen2.0		Operating	Solar Shifting	
		Operating	Microgrid	
	icsd 🧟	Operating	BTM	
	Statkraft BrytEnergy	Commissioning	BTM	
	SDGE 👧	Complete	CAISO Market-Arb	
Gen2.3	SDGE	Manufacturing	CAISO Market-Arb	
Ō	botor oil Ingeteam	Manufacturing	BTM	
Eos. P	ositively ingeniou:	Manufacturing 5.	Microgrid	

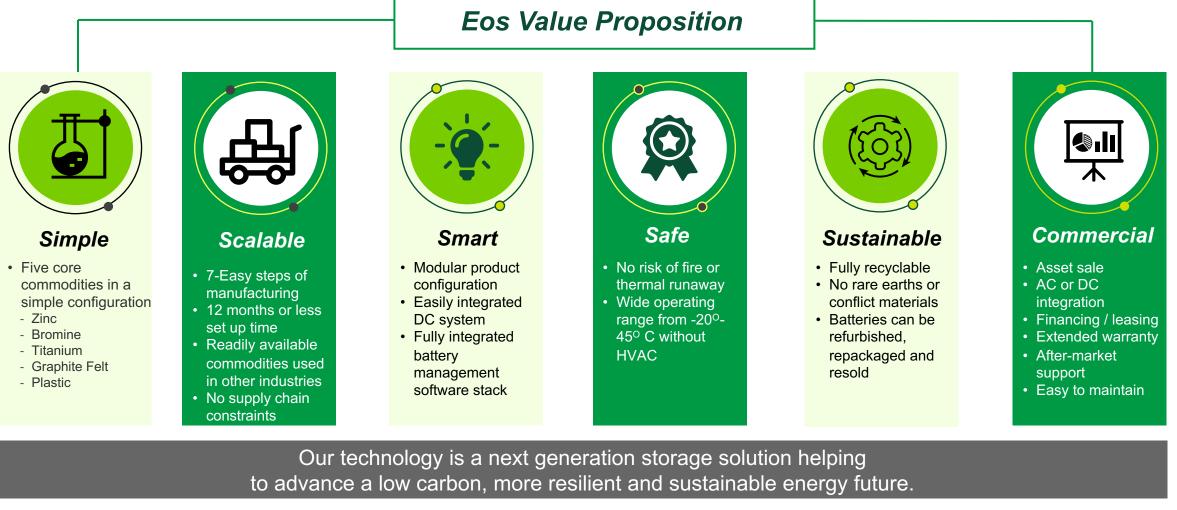


Case Study 2: Large Global IPP

Project Overview/System Specification

Description	 One Aurora 2.0 Energy Stack supporting DC-coupled solar shifting at an existing 3MW solar plant
Location	 Kurnool, India
Size	 1 Energy Stack, 6 Strings, 72 batteries
Operation Date	 March 2019 120 cycles performed, 9MWh delivered, 1,000+ hours of operation

Energy and Efficiency During Operational Cycles


Project Highlights			
Metric	Max	Min	Average
Primary Power	29.93 kW	21.95 kW	27.91 kW
Primary Discharge Duration	4.24 hr	2.32 hr	2.75 hr
Secondary Power	14.39 kW	4.2 kW	7.88 kW
Secondary Discharge Duration	12.74 hr	1.12 hr	3.98 hr
Temperature	53.5 °C	33.8 °C	44.43 °C
RTE	75.66%	69.20%	72.82%

Lessons Learned / Product Improvements			
Lesson Learned	Subsequent Product Improvement		
Overseas Deployment	 Developed operational capabilities to deploy and support product overseas Executed "Make in India" strategy implementing onsite battery filling and integration 		
High Temperature Performance	 Demonstrated that batteries are safe and resilient even when reaching temperatures as high as 70 °C Removed outer shells and upgraded ventilation to provide additional cooling 		

Routinely operating at ambient temperatures as high as 45 °C

Leveraging Scalable, Smart, Safe Technology for a Best-in-Class Commercial Battery Solution

Eos. Positively ingenious.