

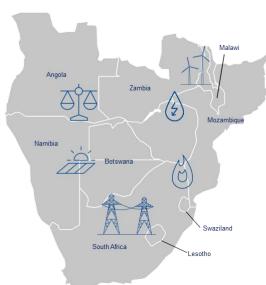
SOUTHERN AFRICA ENERGY PROGRAM (SAEP)

Energy Storage Partnership: Stakeholder Consultation

21 January 2020

USAID Southern Africa Energy Program (SAEP) Overview

The USAID Southern Africa Energy Program's assists in the development of generation, transmission and distribution whilst promoting investment in the energy sector for a brighter, more sustainable future.


Years

ACTIVITY DURATION

March 2017 – March 2022

IMPLEMENTED BY

Deloitte, *with* McKinsey, WorleyParsons, CrossBoundary, and Another Option

TARGET COUNTRIES

Angola, Botswana, Eswatini, Lesotho, Madagascar, Malawi, Mozambique, Namibia, South Africa, Zambia

Madagasca

SADC, SAPP, RERA, SACREEE Implementing in collaboration with Power Africa Partners

USAID Southern Africa Energy Program (SAEP) Overview (cont.)

OUR OBJECTIVE

Increase investment in electricity supply and access in Southern Africa by strengthening the regional enabling environment and facilitating transactions through technical assistance

OUR GOALS

Assist in the development of:

- I. Generation capacity 3,000 MW
- 2. Transmission capacity 1,000 MW
- 3. New connections 3 million

PROGRAM OUTCOMES / TASK AREAS

Outcome 1: Improved Regulation, Planning and Procurement for Energy

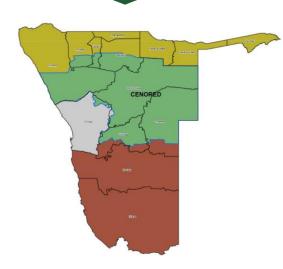
Outcome 2: Improved Commercial Viability of Utilities

Outcome 3: Improved Regional Harmonization and Cross-Border Trade

Outcome 4: Scaled Renewable Energy (RE), Energy Efficiency (EE) and Access

Outcome 5: Increased Human and Institutional Capacity

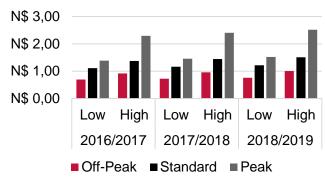
CENORED Overview


NamPower

- Namibia's national utility responsible for Gx, Tx and energy trading (imports & procurement from large IPPs) and operates in 15 municipalities
- Distribution is operated by Regional Electricity Distributors (REDs) or Municipalities

CENORED - Central North Regional Electricity Distributor

- CENORED, ERONGORED, and NORED are the 3 REDs in Namibia
- CENORED distributes electricity to the various towns and settlement areas of Central and Northern Namibia and covers more than 120,000 square km
- Strategic objectives include improving cost efficiency and increasing embedded RE generating capacity to 20 MW or greater if energy storage proves viable


CENORED Case Study

CENORED wanted to evaluate the costs and benefits of using battery storage


Key Considerations:

- Increasing time-of-use (TOU) tariffs, including fast-growing maximum demand and network access charges
- Significant discrepancies between peak and off-peak energy charges
- Management of variable renewable energy from solar PV resources
- CENORED is interested in being an offtaker of battery services, rather than owning and operating the facilities

Energy Charges (N\$/kWh)

Capacity Charges (N\$/kVA/month)

Network Access Charge

BESS Project LIFECYCLE

A BESS project can be broken up into five phases: planning, procurement, deployment, operations and maintenance, and decommissioning.

Planning

BESS project planning involves identifying and evaluating potential feasible, the **BESS** applications and translating them into a set of project initiates a requirements. on the defined

Kev Activities:

- · Use Case **Evaluation**
- · Ownership and Contract Structure Selection
- Documentation of Minimum Requirements

Procurement

If the planning process determines that a BESS project is prospective BESS owner or offtaker procurement based minimum requirements.

Key Activities:

- Procurement Development
- Bid Evaluation and Contract Issuance

Deployment

After the procurement has taken place, the BESS is installed. tested, and commissioned.

Kev Activities:

- Site and System Engineering
- Permitting
- Product Installation. Connection, and Integration
- Project Commissioning and Site Acceptance **Testing**

Operations and Maintenance

Once the system has been commissioned and approved for use, the BESS must be operated and maintained for the life of the project.

Key Activities:

- · Handoff to Distribution/Syste m Operations
- Maintenance
- · Environmental and Safety Reporting
- · Operational Needs Revisions and Recommissioning (as required)

Decommissioning

When the project is no longer viable due to a predetermined end date, safety or reliability issues, or degradation, the BFSS is decommissioned.

Kev Activities:

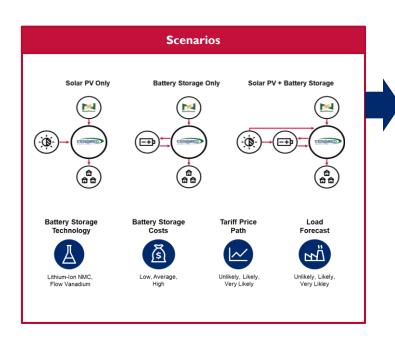
- Decommissioning
- Second Use / Relocation
- Recycling or Disposal

The CENORED Case - Relevant Applications

Туре	Application	Relevance & User(s)		
Bulk Storage	Energy Time-Shift		Primary driver of analysis (CENORED)	
Renewables Integration	Renewables Capacity Firming	•	Primary driver of analysis (CENORED)	
Renewables integration	Renewables Ramp Rate Control	•	Dependent on regulatory requirements and total vRE supply levels (CENORED)	
Ancillary Services	Frequency Regulation		Dependent on existing services (CENORED and/or NamPower)	
	Voltage Support		Dependent on existing services (CENORED and/or NamPower)	
	Spinning/Non-Spinning Reserves		Dependent on existing reserves and regulatory requirements (NamPower)	
	Black Start	•	Multiple black start plants already in production (NamPower)	
Transmission and	T&D Upgrade Deferral	•	Dependent on load forecasts and infrastructure capacity (NamPower)	
Distribution (T&D)	Transmission Congestion Relief	•	Dependent on load forecasts and infrastructure capacity (NamPower)	

Legend: Very Low Unknown High

Very High


The CENORED Case - Relevant Technologies

				Comp	etitiveness	sin SA
Technology	Maturity / Bankability	Advantages	Disadvantages	2016 – 2020	2021- 2025	2026- 2031
Advanced Lead Acid	Mature / Strong	Mature technology Capital cost relatively low	Low cycle life Limited DoD			
Sodium Sulfur Battery	Mature / Strong	 Limited cycle life Requires external heat system High temperature system Large daily self-discharge 	High power and energy density Longer discharge times than Li-ion			
Lithium-Ion	Commercial / Strong	High round trip efficiency Continuing performance improvements and manufacturing cost reductions	Limited but improving cycle life Deep discharge cycles lower lifetime Thermal management in harsh conditions			
Vanadium Flow	Demo / Moderate	Mature for a flow technology Vanadium is a SA resource High cycle life, full DoD	Lower round trip efficiency Requires mechanical systems High cost of Vanadium			
Zinc Bromine Flow	Demo / Moderate	High cycle life, full DoD Less expensive electrolyte than Vanadium Small daily self-discharge	Lower round trip efficiency Requires mechanical systems Power and energy not fully independent			
Iron-Chromium Flow	Demo / Weak	Lower round trip efficiency Low energy density Requires mechanical systems	Power and energy scale independently Small daily self-discharge High cycle life, full DoD			
Liquid Metal Batteries	R&D / Weak	Long electrode life Low cost potential Rapid charge/discharge	Liquid layers sensitive to motion High temperature – requires active heating			

Assess the initial viability of battery storage

CENORED model relied on tariff, solar PV generation, and CENORED load data to generate a simulated power-flow and tariff paths, as well as illustrative CENORED cost savings and project cash flows.

Inputs

- TOU tariff schedule
- Proposed solar PV tariffs
- Proposed solar PV nameplate capacity
- Projected solar PV capacity factor
- CENORED load for each site

Outputs

- · Simulated power-flow
- Simulated tariff paths
- Illustrative lifecycle and annual cost savings for CENORED
- Illustrative project cash flows for an independent developer

9

Model Dashboard

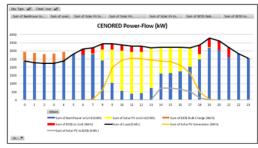
Site:
Bettery Type: Lithium-len NMC
Scenarie: Seler PV+BESS
Project Developer: Seler PV+BESS

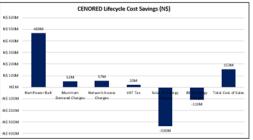
BESS Cort Lovel: Average
Lovel Growth: Very Likely
HamPower Tariff Path: Very Likely

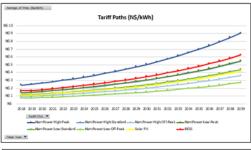
System Cherecteristics	Teles	Unite
Peak Domand to Date (06/2017)	5.0	MVA
Main Transformer		MVA
Distribution	11	PA.
Salar PV Pawer Capacity		MM
BESS Installed Pawer Capacity	0.875	MM
BESS Installed Energy Capacity		MMK
BESSEffective Energy Capacity	2.45	MIN
Battery DC Black Overzizing	26%	
Capacity Degradation Factor	10%	×

BESS Performance Spece	Teles	Unite
Raund Trip Efficiency	86,00%	×
Solf-Dircharge Lazzez per Haur	0.01%	и
Dopthaf Dirchargo	1000	Ж
Maximum Charge Rate	0.25	
Cycle Life @ 100% DeD	4,000	Cycler
Calon dar Life	10	Years

Leed Growth & HHD	Telus	Unitr
CENORED Load Growth: FY20+	1.60%	×
CENORED NMD Margin	10.00%	×

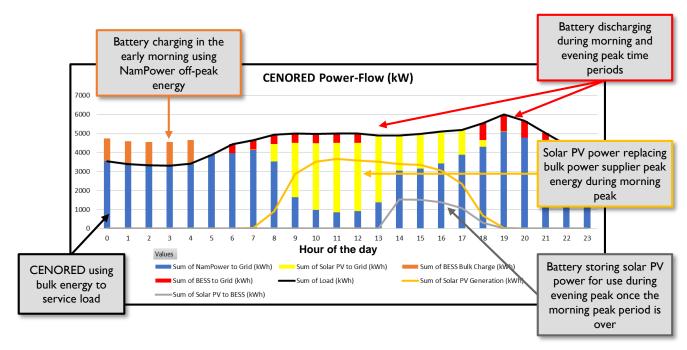

Price Path	Teles	Units
NamPauor Enorgy Chargo: FY20	4.91%	×
NamPauor Enorgy Chargo: FY21+	6.70%	×
NamPauer Domand Chargo: FY20+	10.64%	×
NamPauer Access Chargo: FY20+	10.64%	×
Salar PV Enorgy Chargo: FY20+	6.76%	×
Salar PV Energy Charge: FT20+(GTT)	9.40%	×
BESSEnorgy Chargo: FY21+	6.70%	×
BESS Capacity Chargo: FY21+	0.00%	×


BESS Cartr	Telas	Unite
Land	\$7,000.00	NS
AC System	\$955,605.00	NS
DC System	\$17,452,365.00	NS
Other BESS Capital Carts	\$2,766,225.00	NS
EPC	\$2,761,195.50	NS
Augmentotian	\$9,203,985.00	N\$froplecomont
ORM	\$317,612.93	NSfyeer
Extended Warrenty*	\$317,612.93	N\$fyeer

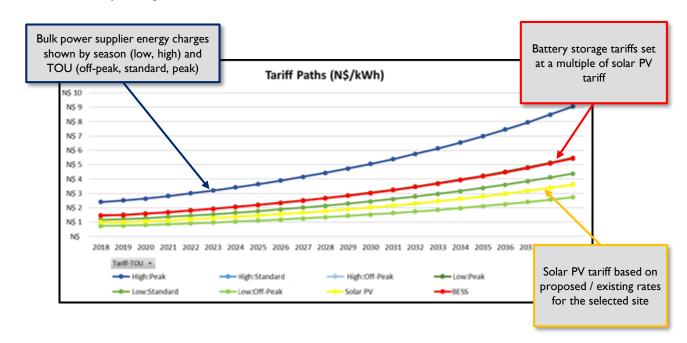

Saler P# Cartr Land	Telus	Unitr
Land	\$35,000.00	N\$
Salar PV Systom Capital	\$87,500,000	NS

BESS OPER Cart Calculations	Telue	Units
EPO	15,00%	X of AO/DO System Costs
Augmentation	50.00%	X of AO/DO System Costs
ORM	1.50%	X of Installed Capital Costs
Extended Warranty	1.90%	X of Installed Capital Casts

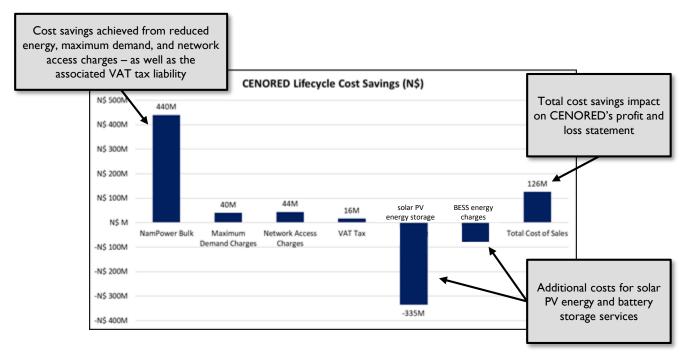
CEHORED Finencial Matrice	
Total Cart Savingr (H\$)	N\$ 152,650,005
Average Cart Savings per Tear (H\$)	N\$ 7,632,944
Project Developer Financial Hetrica	
Hat Pracant Value (H\$)	N\$ 1,231,284,253
Internal Rate of Return (2)	9.882
Payback Parind (Tears)	- 11



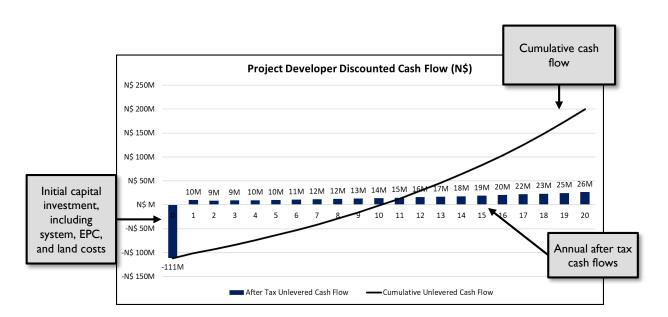
Model Outputs: Simulated Power Flow


The simulated power-flow shows the exchange of energy between CENORED, bulk power supplier, the solar PV plant, the battery storage system, and the load on a week day, Saturday, or Sunday

Model Outputs: Simulated Tariff Paths


The simulated tariff paths show the relative price per kWh of the bulk power supplier TOU tariffs, solar PV tariffs, and battery storage tariffs

Model Outputs: Illustrative CENORED Cost Savings


The illustrative CENORED cost savings show the potential savings that could be achieved from the selected scenario relative to business as usual.

Model Outputs: Illustrative Project Cash Flows

The illustrative project cash flows demonstrate the potential return on investment for an independent project developer.

Challenges and Issues experienced in the CENORED case

Challenge Type	Description
Finance / Procurement	 Necessary to value and stack as many use cases or services as possible Grid-scale battery storage procurement test cases required in the region Unknown level of interest and terms and conditions of funders/financiers
Technical	 Which chemistry/technology is appropriate for the region? Degradation and requirements for augmentation for our region are not well known Where are the technical skills?
Regulations	 Should a BESS be issued with a license as a generator or as a load? How should battery storage services be incorporated into existing tariff regimes? Utility-owned vs battery storage as a service

Results of our approach with CENORED – may be applied to other counterparts

Allows decisions about resourceinvestment early in the process

SAEP's approach was to quickly develop models that could enable decision-making through an iterative process with refinements of the model after each iteration and decision-point

Narrows the scope of analysis after each iteration of the model

CENORED was able to eliminate 3 sites after the initial iteration of analysis and proceeded to detailed analysis with a smaller set of sites. In the next iteration of investigation, CENORED will only focus on the most viable sites

Enables informed discussions with stakeholders

Using outputs from each phase of analysis, the utility was able to have discussions with counterparts based on research and analysis. This enhanced the quality of discussion outputs

Includes legal, regulatory and procurement considerations

SAEP included a scan of the regulatory environment as well as procurement approaches to enable CENORED to identify barriers and enablers that they need to consider to make their battery storage project a success

Contact Details

Tshegofatso Neeuwfan (Presenter) – Deputy Lead RE & EE

tneeuwfan@southernafricaenergy.org

Craig VanDevelde - Chief of Party

cvandevelde@southernafricaenergy.org

Liz Pfeiffer - Deputy Chief of Party - Technical

Ipfeiffer@southernafricaenergy.org

