Presentation of MASEN R&D

Hicham Bouzekri, Ph.D.

Director of R&D and Industrial Integration

AN AMBITIOUS ENERGY STRATEGY WITH CLEAR OBJECTIVES

AMBITIOUS OBJECTIVES SET TO ENSURE THE ENERGY SECURITY OF THE COUNTRY, DIVERSIFY THE SOURCES OF ENERGY AND PRESERVE THE ENVIRONMENT

ENGAGED ACTORS TO ACHIEVE NATIONAL ENERGY TARGETS

A UNIQUE MODEL RELYING ON AN INTEGRATED VISION OF REN PROJECTS DEVELOPMENT

SEVERAL ACTIONS FOR AN INTEGRATED DEVELOPMENT

Solar Cluster

- 80 members and 300 companies connected
- Several projects incubated and financed

R&D

- Several partnerships
- European projects of R&D collaboration
- 1 demonstrator in operation, 1 demonstrator in construction and many others understudy

Local development

- 5 sectors of intervention and 4 territories
- More than 150 actions led since 2010
- More than 77 000 beneficiaries

...for the development of an integrated RENecosystem

MASEN: AN INNOVATIVE INSTITUTIONAL SCHEME

4

A UNIQUE MODEL RELYING ON AN INNOVATIVE INSTITUTIONAL SCHEME

INNOVATIVE INSTITUTIONAL SCHEME

MOBILIZATION OF CONCESSIONAL FINANCING

... designed to optimize the risk allocation

An outstanding mobilization of financing

NOOR OUARZAZATE COMPLEX, 580MW MULTITECHNO SOLAR PLANT

ALMOST 4 000 MW OF RENEWABLES IN OPERATION OVER A TOTAL INSTALLED CAPACITY OF 8 200 MW

SOLAR PROJECTS - 700 MW

AIN BENI MATHAR - 20 MW

NOOR OUARZAZATE I – 160 MW

NOOR OUARZAZATE II – 200 MW

NOOR OUARZAZATE III – 150 MW

NOOR OUARZAZATE IV – 70 MW

NOOR LAAYOUNE – 80 MW

NOOR BOUJDOUR - 20 MW

HYDRO PROJECTS - 1 770 MW

MORE THAN 29 HYDRO-ELECTRIC DAMS ACROSS THE COUNTRY AND 1 STEP

WIND PROJECTS - 1200 MW

1 Amougdoul – 60 MW

2 TANGER I – 140 MW

TORRES / KOUDIA AL
BAIDA – 50 MW

TARFAYA – 300 MW

...OF WHICH AROUND 620 MW
DEVELOPPED UNDER THE LAW 13-09
SCHEME

AKHFENIR 1 & 2 200 MW

HAOUMA 50 MW

FOUM AL OUED 50 MW

3 CIMAR 5 MW

FUTURE REN PROJECTS: OTHER PROJECTS PLANNED

SOLAR PROJECTS

700 MW OF SOLAR PROJECTS IN OPERATION

WIND PROJECTS

1 200 MW OF WIND PROJECTS IN OPERATION

HYDRO PROJECTS

1 770 MW OF HYDRO PROJECTS IN OPERATION
MORE THAN 29 DAMS IN OPERATION AND 1 STEP

Noor Argana 200 MW

Noor Atlas 200 MW

NOOR PV II 800 to 1 000 MW

NOOR MIDELT II 800 MW

WIND PROJECT INTEGRATED PROJECT
OF 850 MW

WIND PROJECT – TAZA
150 MW

KOUDIA AL BAIDA REPOWERING – 120 MW

DETAILED PROGRAMING ONGOING TO TAKE INTO ACCOUNT THE POSSIBLE SYNERGIES BETWEEN REN TECHNOLOGIES

+ 3000 MW by 2020

MASEN R&D ECOSYSTEM POSITIONNING

MASEN has an end-to-end holistic value chain approach to developing renewable energies in Morocco

As part of this complete approach, MASEN R&D offers an accelerated path for industrialization of applied Renewable Energy R&D

MASEN R&D adopts a market pull approach where market opportunities are the driver for innovation effort in complement to a university-push approach where research teams proposals are the driver

MASEN R&D efforts help industrialize lab demonstrators (TR 4) by funding at scale demonstration systems in operational environments (TRL 7)

The overlap secures a continuum of support for market competitive renewable energy innovations

Technology Readiness Levels

- TRL 0: Idea. Unproven concept, no testing has been performed.
- TRL 1: Basic research. Principles postulated and observed but no experimental proof available.
- TRL 2: Technology formulation. Concept and application have been formulated.
- TRL 3: Applied research. First laboratory tests completed; proof of concept.
- TRL 4: Small scale prototype built in a laboratory environment ("ugly" prototype).
- TRL 5: Large scale prototype tested in intended environment.
- TRL 6: Prototype system tested in intended environment close to expected performance.
- TRL 7: Demonstration system operating in operational environment at pre-commercial scale.
- TRL 8: First of a kind commercial system. Manufacturing issues solved.
- TRL 9: Full commercial application, technology available for consumers.

A DEDICATED R&D PLATFORM IN OUARZAZATE

As a part of MASEN's holistic approach to renewable energy development, MASEN R&D is a dedicated R&D platform for:

Qualification of innovative renewable energy technologies

Animation of a collaborative ecosystem of industrial and academic actors

THIS R&D
PLATFORM HOSTS

At-scale demonstration pilots that test component and system reliability in real operating conditions

Collaborative projects that enable research-industry tech transfer

Commercial services offers for national and international universities, research centers, multinational and start-ups developping innovative renewable energy solutions

DIFFERENTIATING ELEMENTS of MASEN R&D

- ✓ MASEN R&D Outdoor exposition sites are located on the production sites giving an « operating conditions » demonstration environment
- ✓ MASEN R&D offers a network of exposition sites covering most African renewable energy sites production conditions: Desert, mountains and sea side, covering different dust, sun and rain profiles
- ✓ By prioritizing market opportunities as an R&D driver, MASEN R&D is maximizing the success rate of innovation & technology transfer to industrialization
- ✓ By linking R&D efforts to renewable energy project procurement, MASEN R&D is creating selfsustaining, job creating industrial opportunities pipe for innovative solutions

A 240 HECTARES R&D PLATFORM IN OUARZAZATE...

- ➤ Global surface area: 240 hectares
- Grid connection availability
- ➤ High Solar Irradiance → DNI > 2600 kwh/m²/yr
- Desert-like and real operational and meteorological conditions
- Available infrastructures (roads, utilities and telecoms.)
- Dedicated Masen's personnel
- Situated within a 580 MW Solar Complex

EU PROJECTS (2/3): H2020 « RESLAG »

Objectif

REslag

Budget

Durée

Partenaires du consortium

Valoriser les déchets sidérurgiques dans des industries énergivores (céramique, verre ...) par:

- La purification des déchets sidérurgiques et élimination des composants non ferreux pour une revalorisation minière,
- La fabrication de *pebbles** pour des applications de récupération de l'énergie dans des procédés industriels à usage intensif en énergie
- L'utilisation des *pebbles* dans le stockage thermique de l'énergie dans les centrales solaires CSP
- La production de composants céramiques réfractaires innovants

9 721 241 € équivalent à 940 MH dont 278 000 € (2,8%) alloués à Masen, équivalent à 48 MH

42 Mois (Sep. 2015 → Fév. 2019)

Imperial College

OPTIMUMCEMENT

London

Fraunhofer
German
Aerospace Center

ready-mix solutions

Productos Tubulares

EU PROJECTS (3/3): H2020 WASCOP

Objectif

Water Saving for Solar Concentrated Power:

- Développer une solution intégrée et innovante destinée à optimiser la gestion de l'eau dans les centrales CSP
- Atteindre une réduction significative de la consommation d'eau (jusqu'à 70% à 90%) dans les systèmes de refroidissement du lot turbine et de nettoyage des surfaces optiques du champ solaire

Durée

Janv. 2016 - Dec. 2019

Budget

5 941 607 € équivalent à 645 MH dont 397 500 € alloués à Masen, équivalent à 50 MH

Partenaires du consortium

OMT Solutions BV

EU PROJECTS: H2020 SUPERPV

Objectif

CoSt redUction and enhanced PERformance of PV systems

- => SUPER PV's goal is to reduce costs of the photovoltaics (PV) system by combining technological innovations and data management methods along the PV value chain:
- Integration of innovations (nanocoating, enhanced encapsulation, bifacial, ...) into state of the art PV modules
- Enhancing PV power electronics durability and efficiency
- 3Innovative Digital platform for PV management and Building Info. Mangt insuring integrated flow

Durée

01/05/2018 to 30/04/2022 (48 Months)

Budget

9 907 793,00 € inc. 199 500,00 € allocated to Masen

Partenaires du consortium

loT

Manufacturing

OSER

лл COSYLAB

(1) SINTEF

[12-18]% Industry 4.0 Data Management

- [7-14] %

https://www.superpv.eu/

LCOE reduction

DEMO-SITES

In harsh climate conditions to evaluate cost efficiency and demonstrate competitiveness of

Temperate (cold/wet) climate

-Norway: Oslo & Trondheim

-Lithuania: Vilnius

Tropical (hot/wet) climate -Spain: Sevilla

Desert (hot/dry) climate -Morocco: Ouarzazate 8 Rabat

-Tunisia: Tozeur

DEMONSTRATION PROJECTS: CPV BY SUMITOMO (2/2)

Objectif

Extension du premier démonstrateur à 1MW en collaboration avec un industriel marocain

Budget

5M\$ USD

Parties prenantes

Vanadium Flow Battery pilot

Azelio: long term thermal storage pilot

- Al PCM based heat storage
- PV powered (could be wind)
- Up to 13hours of storage
- > 13kw Stirling engine per unit
- > 30% round trip efficiency
- First electricity generated Dec'19

247Solar: Air based heat storage

- ➤ High temp turbines 2x200kWe
- > Air based heat capture and storage
- Widely available clay based heat storage medium
- Potentially full day operation in high DNI areas
- Reach DoE CSP price target of 6cts

KOICA funded SMMART

