

## Assessing the Needs for Long Duration Stored Energy

### Abhishek Somani, Ph.D.

Principal Economist, PNNL





# **Overview**



- Significant growth in deployment of energy storage: 4-6 hours duration
  - Business case is well established, although the market for services is thin
  - Grid services capacity, ancillary services, and firm power
- Emerging but niche business cases: co-locate storage with conventional gen
  - Increase capacity and add flexibility run-of-river hydro, nuclear, coal
  - Increase longevity and reduce wear/fatigue storage can reduce start/stops
- Future need (nearer than we can imagine): Long Duration Stored Energy
  - Significant energy deficits from wind and solar energy droughts ("dunkelflaute" events) Energy drought events likely to be exacerbated in an even higher RE future
  - Concurrently, significant amount of RE curtailment in several markets
- Policy, regulatory, and market initiatives
  - 90 plus PSH FERC licenses but why is nothing getting built?



### **Technology Collaboration Programme** by lea

## Atypical weather events create <u>energy</u> shortfalls

- During the 2020 summer West Coast heatwave, California saw rolling blackouts
  - High demand in CA
  - Low CA/PNW wind output
- Pacific Northwest hydropower exports provided some relief
  - Sustained high generation during the heat wave, but
  - Exports limited by transmission availability









# **EAHYDRO**

## **Dunkelflaute – Energy drought definition**





duration to qualify as a wind drought,  $n_{min}$ , is 4 hours, and the length of the drought period, *I*<sub>drought</sub>, is 5 hours.

## **Need for long-duration stored energy**



Renewable energy resources are prone to weather related energy droughts - dunkelflaute events





ERCOT event corresponds to 10 plants @ 1000 MW capacity running for 15 hours straight

# **EAHYDRO**

### Longest Energy Deficit **Event** of Hrs.) (MWh)

### 15 145,853

## **Conventional generation provide backup, currently**





### Coal stocks by type, January 2009 - January 2023



Data source: U.S. Energy Information Administration



## **Other indicators of long-duration stored energy**



Solar

Wind

![](_page_6_Picture_3.jpeg)

### There has been a steady increase in the amount of VRE curtailment in California (Source: CAISO)

# Key takeaways

![](_page_7_Picture_2.jpeg)

- Atypical weather is becoming more frequent, which leads to energy shortfalls, even though there's enough installed capacity.
- Systems are increasingly limited in energy, not capacity.
  - Current capacity-based definitions of resource adequacy fail to account for long-duration energy shortfalls.
  - Hence, resource adequacy assessments will have to be more energy (fuel) based as opposed to capacity based.
- Market, regulatory, and policy paradigms will need to evolve to make a viable business case going forward
  - Arbitrage and grid services-based remuneration will not be enough to make the business case, especially for LDES
  - Storage-as-a-service model is starting to emerge, which pays energy storage to store energy; e.g., Switzerland's Winter Reserve product
  - Alternative capacity market constructs are emerging that lay greater emphasis on available/stored energy; e.g., Colombia's capacity market construct

![](_page_7_Picture_11.jpeg)

![](_page_8_Picture_1.jpeg)

ology Collaboration Programme

![](_page_8_Picture_2.jpeg)

### Abhishek.Somani@PNNL.GOV

![](_page_8_Picture_4.jpeg)

Abhishek Somani<sup>1</sup> Emily Barrett<sup>1</sup> Zhi Zhou<sup>2</sup> Gavin Chan<sup>3</sup>

<sup>1</sup> Pacific Northwest National Laboratory <sup>2</sup> Argonne National Laboratory <sup>3</sup> Hydro Tasmania Hydro-Québec <sup>5</sup> EDF France Strategen Consul Oak Ridge National Laboratory 8 Freddie Mac

May 2024

Suggested citation: Somani, A., et al. May 2024. An Assessment of Resource Drought Events as Indicators for Long Duration Energy Storage Needs. https://doi.org/10.2172/2349123

![](_page_8_Figure_10.jpeg)

### Free download of report:

![](_page_8_Picture_12.jpeg)

### An Assessment of Resource Drought **Events as Indicators for Long-Duration Energy Storage Needs**

Luke Middleton<sup>3</sup> Guillaume Tarel<sup>4,5</sup> Allison M Campbell<sup>1</sup> Audun Botterud<sup>2</sup>

Dhruv Bhatnagar<sup>1,6</sup> Alex Beckitt<sup>2</sup> Chris O'Reilley7 Yanyan Zhu<sup>1</sup> Xueqing Sun<sup>1,8</sup>