

WORLD RESOURCES INSTITUTE

Water risk and economic growth

Africa: economic loss due to lack of access to safe water and basic sanitation estimated at 5% of GDP (WHO 2006)

China: external cost of water already amounts to about 2.3 percent of China's GDP, of which 1.3 percent is attributable to scarcity of water, and 1 percent to direct impacts of water pollution (World Bank 2009)

Informing portfolio decisions

Example: Power plant locations and water stress levels

0%

20%

Generation in Asia (2010).

60%

80%

100%

40%

Facility / project level water management

Portfolio risk management

Ranking companies by risk

<HELP> for explanation.

Comdty**OSI**

1) Export 2) Alerts

Environmental Impact Overview

Water Scarcity > United States > Southeast > Utilities					
Parent Company	% of Regional Capacity by R ⁻ sk Level				% of Total
	Very High	High	Medium	Low	Capacity
1) Georgia Power C	68.58	31.42	0	0	43.61
2) Alabama Power	50.26	23.08	26.66	0	46.74
3) Mississippi Powe	0	100	0	0	23.45
4) Tennessee Valle	0	42.31	25.76	31.92	64.13
5) Cinergy Corp	0	20.11	79.89	0	19.33
6) Florida Power Co	0	0	100	0	84.68
7) Florida Power &	0	0	62.71	37.29	81.31
8) Progress Energy	0	0	0	100	1.40
9) JEA	0	0	0	100	13.11
10) Virginia Electric	0	0	0	100	72.29

Map Assets Assets by Company Assets by Risk Level

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 9204 1210 Hong Kong 852 2977 6000

Demand for information

Growing demand for actionable information that allows company management and investors to manage their exposure to water risk

Financial impacts

Why are we doing Aqueduct? Context matters

What level of detail do decision makers need? Sub-basin level, across a number of key risk drivers

What are the primary project goals?

An online global database of local level water risk indicators and set of applications A global standard for measuring and reporting geographic water risk

"Making the local globally comparable"

Which basins will we initially focus on?

- Yellow
- Yangtze
- Mekong
- Ganges
- Indus
- Murray-Darling
- Vaal
- Danube
- Colorado
- Rio Grande

Which sectors will we initially focus on?

- Oil & gas
- Power generation
- Food & beverage
- Mining
- Chemicals and coatings
- Other manufacturing
- Agribusiness

Which indicators will we initially focus on?

Access and growth constraints:

- Water withdrawal ratio
- Water withdrawal variability
- River flow trend
- Seasonal variability
- Irrigation efficiency potential
- Non-industrial allocation

Cost risks:

- Water reuse index
- Water quality class
- Treated wastewater
- GDP per capita
- Sewerage coverage
- Municipal water price
- Industrial scarcity value

Disruption potential:

- Compliance violations
- Media coverage
- Water coverage gap
- Minimum environmental flows
- Water productivity
- GDP to water price
- Government revenue gap
- Infrastructure investment gap

What Aqueduct Offers Examines water risk at more local (i.e. sub-basin) levels

What Aqueduct Offers Examines a broad set of risk indicators (not just physical risk)

What Aqueduct Offers

More accurate estimates through refined modeling

E.g. water demands by

People

Industries

Proxy: lights by night

Irrigated agriculture

What Aqueduct Offers

Tracks and projects indicator trends (not just snapshots)

Runoff at Lijin

100 million m^3

Yellow River prototype

www.wri.org/aqueduct

C O projects.wri.org/aqueduct/atlas

÷

Water Risk Atlas | World R... 🛛 🛛

Disruption Potential

Map Government Revenues Ratio

Absolute Value: 0.42%

C O projects.wri.org/aqueduct/atlas

Water Risk Atlas | World R... ×

[1] Facility 1 [Active] Delete

Map - Overall Water Risk

10 G Street NE Suite 800 Washington, DC 20002, USA / Phone +1 202-729-7600 / Fax +1 202-729-7610

Water Risk Reporter

Facility performance data ("water footprint")

Theory of Change

"No regret": better information for all "Inside the fence" improvements: lower water dependency

"Outside the fence" engagement: higher water security

Want to know more?

Piet Klop: pklop@wri.org Tel: (202) 729 7615

Charles Iceland: ciceland@wri.org Tel: (202) 729 7746

Aqueduct represents a significant improvement in measuring and mapping water risk

- More local (i.e. sub-basin level)
- Broader set of indicators: physical (including water quality), regulatory, governance, socio-economic
- More accurate estimates through refined hydrological modeling
- More current data
- Trends (not just snapshots)
- Intra-annual variability (not just annual averages)
- Different risk weightings for different sectors
- Information supplemented by local facility managers and experts
- Map links to water risk news and analysis

<HELP> for explanation. EquityOSI Screen saved as C:\Documents and Settings\robert.kimball\Desktop\Bloomberg OSI S 2) Alerts 1) Export Enviromental Impact Overview

SN 493192 H242-1420-0 06-Aug-2010 14:48:26