

Conventional and Renewable Generation

Conventional Power Generation Systems

Central Station

Large Steam Turbines Coal and Nuclear

Combustion Turbines
Natural Gas

Large Hydro Turbines
Dams and Pumped
Storage

Electric Power System

Source: http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/index.html

Conventional Generation Sources

- Dispatchable
- Energy is inherently stored within source of fuel
- Use when needed
- Well understood and established technologies
- Highly reliable
- Easy to control

Source: http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/index.html

Conventional Power Generation Systems: Coal

Source: http://www.tva.gov/power/coalart.htm

- Low thermal efficiency (35%)
- Thermal pollution (condenser)
- Notable air pollution (Ash, CO₂, SO₂, NO_x)
- Long time required to start and stop
- Considered a base load unit: 2 MW/min ramp rates
- Large capital costs
- Current operating costs: between \$17-\$25/MWh

Conventional Power Generation Systems: Nuclear

Source: Tennessee Valley Authority (TVA)

Characteristics:

- Low thermal efficiency (35%)
- No smoke stack (no emissions)
- Thermal pollution (condenser)
- Concerns about radioactive waste disposal
- Long time to start and stop
- These units are almost exclusively unavailable for dispatch, they generally remain fixed at the maximum output. Overseen by Nuclear Regulatory Council (NRC)
- Largest capital costs
- Current operating costs: between \$8-\$10/MWh

Source: http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/index.html

Conventional Power Generation: Steam Turbines (Biomass)

Combustion (Gas) Turbines – Simple Cycle

Source: http://www.tva.gov/power/comb_cycle_video.htm

Reference: Tennessee Valley Authority (TVA)

- These power plants burn fuel in a jet engine and use the exhaust gases to turn a turbine.
- Turbine draws in air, compresses it, mixes with fuel, and ignites
- Hot gases expand driving a generator
- Quick starting
- Load following or peaking unit: 10-12 MW/min ramp rates
- Relatively low capital costs
- Current operating costs: between \$40-\$50/MWh, depending on the cost of natural gas

Combustion (Gas) Turbines – Combined Cycle

Combined-Cycle Generating Unit Bypass Stack (Optional) Stack Condenser Con

Reference: U.S. Department of Energy, Energy Efficiency and Renewable Energy

- Turbine draws in air, compresses it, mixes with fuel and ignites
- Hot gases expand driving a generator
- Heat Recovery Steam Generator (HRSG): Exhaust heat is routed to a boiler, and the steam is used to produce additional power
- Because of the higher efficiency, these units are the lowest cost natural gas-fueled generators
- Current operating costs: between \$28-\$35/MWh, depending on the cost of natural gas

Conventional Power Generation Systems: Hydroelectric

Reference: Tennessee Valley Authority (TVA)

Characteristics:

- High efficiency (85-90%)
- Considered a renewable energy source
- Very short start times and easy to control
- Environmental concerns (water flows and siltation)
- Very inexpensive source of power

Source: http://www.tva.gov/power/hydro.htm

Conventional Generation: Hydroelectric Pumped Storage

- Uses electricity during low demand times to pump water from the low-elevation reservoir to the high-elevation reservoir.
- During peak power demands the water flows back down acting like a conventional hydroelectric facility.
- The difference in pricing during the day and night makes this type of unit very lucrative.

Renewable Power Generation Systems

http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/index.html

NREL/TP-6A20-51137. April 2012

- Non-Dispatchable
- Considered to be unconventional generation sources
- Characterized by variability and uncertainty
- Energy source must be used when available
- More difficult to control
- More difficult to schedule
- Use it or lose it!

Renewable Power Generation: Solar Photovoltaic

- Low conversion efficiency (15-25%)
- Directly converts solar radiation into electricity
- Produces direct current, converted to alternating current by inverter
- Can generate electricity from direct and diffuse solar radiation (sunny and cloudy conditions)
- High capital costs and space requirements
- Low operating costs (few moving parts, no fuel cost)

Renewable Power Generation: Concentrating Solar Power

- Converts solar energy to thermal energy (steam), which drives turbine to generate electricity
- Requires direct solar radiation to generate heat
- May heat water directly or use a working fluid (e.g. oil) to collect heat and later transfer to water to create steam
- Can store thermal energy in molten salt or other media, allows generation of electricity into evening/night
- Can be coupled with conventional fuels to generated steam/electricity 24/7
- High capital cost

Renewable Power Generation Systems: Wind

- Converts kinetic energy of air into electricity via gearbox and generator
- Generation depends entirely on wind availability
- Turbines have a "cut-in" speed (minimum start-up speed) and a "cut-out" speed (maximum safe operation speed)
- Wide variation in rated capacity of machines
- Energy generated is highly sitedependent
- High capital costs
- Low operating costs

Renewable Power Generation Systems: Geothermal

- Facilities use energy from geologic sources to produce steam, drive turbine to produce electricity
- Can produce energy on demand (operates as baseload in many locations, e.g. California)
- Energy generation highly location-dependent
- Underground resources may require replenishment of water to continue steam production
- Areas producing geothermal energy can be exhausted over time
- High capital costs
- Moderate operating costs (disposal of produced water, reinjection, monitoring

Renewable Power Generation Systems: Small Hydroelectric

- Smaller scale than conventional hydroelectric
- May remove a portion of flow from a river or canal to generate power
- Run-of-river system passes some portion of river flow through turbine, returns to main river downstream
- Lack of dam means no storage, potential lower environmental impact but less dispatchable
- Highly site-dependent
- High capital cost
- Moderate operational cost

Wind

NREL PIX 21873

Distributed Wind

Photo from: N. Blitterswyk, "A Bipartisan Group of Senators Is Pushing For Distributed Wind – Here's Why It Matters". Cleantechnica.com, 29 Dec 2014.

Wind Resource Map – 30 m

Wind Resource Map – 80 m

Wind Turbine Components

Average Hub Heights and Rotor Diameters Over Time

Solar Energy Technologies

Solar Energy Technologies

Photovoltaic

Concentrated **Solar Power**

PV systems use semiconductors to convert sunlight directly to energy.

CSP systems focus the sun's heat onto a generator to produce electricity.

Solar collectors absorb the sun's energy to provide low temperature space or water heating.

Passage for natural interior lighting or piping light indoors using fiber optics.

Energy Conversion

Light → Electricity

Heat → Electricity

Heat → Heat

Light → Light

Conversion Type

Direct

Indirect

Direct

None

United States - Solar Resources

PV Basics

PV Basics

Irradiance and Temperature Effects on PV Output (I-V Curves)

Source: Canadian Solar MaxPower CS6X Product Data Sheet

Solar Resource Over Time

Source: Advanced Energy, SEGIS Technology Demonstration: Solutions for High Penetration Solar PV

Array Tilt and Orientation

Solar Azimuth Angle of Collectors

Source: www.oregon.gov/ENERGY/RENEW/Solar/docs/SunChart.pdf

Tracking Configurations

Fixed-Tilt Array

Tilted 1-Axis Tracking

Horizontal 1-Axis Tracking

2-Axis Tracking CPV

Tracking Systems vs. Monthly AC Energy Production

1-MW Array in Boulder, Colorado Fixed Tilt, 1-Axis and 2-Axis Tracking

Source: P. McNutt, NREL. Modeled using PVWatts: http://www.nrel.gov/rredc/pvwatts/site_specific.html

PV Module Shading

Minor PV module shading can reduce output dramatically

Source: Peter McNutt, NREL

I-V and P-V curves of an unshaded and shaded crystalline-silicon module - shading just **7%** of the module area yields a **93% drop** in its output power!

PV Inverter Overview

- Converts DC from PV Modules to AC into Utility Grid
- Implements Maximum Power Point Tracking
- Provides system monitoring
- Implements grid interactive features

