Regional Power Integration:

Early Findings from an ESMAP Regional Power Study

Peter Robinson

ECONOMIC CONSULTING ASSOCIATES LIMITED 41 Lonsdale Road London NW6 6RA UK tel +44 (0)20 7604 4545 / fax +44 (0)20 7604 4547 www.eca-uk.com

World Bank BBL I Building (I2-220), 10 November 2009

Presentation outline

- Study outline and case study overview
- Literature review
- Key themes
 - Financing interconnector projects
 - Regional power systems planning
 - Regulatory harmonisation
 - Integration and market reform
 - Regional institutions
 - Environmental concerns

Study Outline and Case Study Overview

Potential of Regional Power System Integration

Phase 1

12 Case Studies

Literature Review

Workshop

Phase 2

Guide' to Power Sector Integration

Presentation objectives

 Feedback from Bank experts on work to date

Discussion on Phase 2

Case studies

This component of ESMAP's Regional Energy Integration Strategies Program focuses on the power sector

- Broad view of power integration not just power pools but a mix of 'transmission and trading' and 'generation' case studies
- PJM and UCTE from developed countries
 - Interesting lessons but even these sophisticated structures do not provide perfect solution for all RPSI issues eg suboptimal investment in crossborder transmission
- Remainder from Eastern Europe, Latin America, Africa and Asia
- Extremely diverse in terms of size and forms of trade

Location of the 12 case studies

Some characteristics of the case studies

Transmission & trade		Year	# participants	MW	GWh pa	Max Trade %	PSP	Trade Arrangements
1	PJM	1927	14	163,500	700,000	100%		Multiple markets
2	UCTE	1951	24 (29)	672,000	2,300,000	10%	\checkmark	EU Single Market
3	GMS	1971 (1995)	6	88,000	366,000	1%		Bilateral
5	SAPP	1995	12 (9)	46,000	274,000	7%		STEM, now DAM
6	Argentina-Brazil	2000	2 (3)	125,000	480,000	13%	\checkmark	Bilateral
8	South East Europe	2005	9	48,200	179,000	14%	\checkmark	EU Single Market
10	SIEPAC	2010	6	9,700	32,000			MER regional market
11	GCC	2010	6	73,000	290,000			Spinning reserve
12	NBI	2010	9	27,400	142,000			Bilateral

Ģ	Seneration scheme	Year	# participants	MW	GWh pa	Max Trade %	PSP	Trade Arrangements
4	Cahora Bassa	1977 (1997)	3	2,075	13,000	-		Bilateral
7	Manantali	2002	3	200	767	-		Fixed shares
9	Nam Theun 2	2009	2	1,070	5,636	-		Bilateral

Number of schemes per decade and per number of utilities

Literature Review

Format of literature review

Purpose

 document literature relevant to RPSI in Bank's client countries

Introductory overview of main themes

- Motivations and barriers to integration
- Outputs (market development, institutional and physical infrastructure)
- Facilitating the process of integration (political will, coordination, sequencing)
- Future research topics
- Annotated bibliography
 - Papers divided into 9 categories
 - Extended bibliographic entries
 - Eg the E7/ESMAP RECI Guidelines

Findings

Much of the literature on benefits of RPSI is advocacy rather than analysis, e.g.

- 'RPSI promotes access to electricity' little evidence of this
- 'RPSI gives rise to environmental benefits' in some cases, but by no means all
- 'RPSI means higher investment based on least cost projects' – no assurance of this:
 - politicians equate energy security with having domestic generation capacity > max demand
 - bias towards national power development plans
 - regional aspect may or may not increase flow

Dearth of serious academic work on RPSI

- Empirical analysis of actual benefits of RPSI
- Theoretical analysis of benefits distribution
- Structuring and financing of RPSI projects
- Political-economy analysis of institutions to promote RPSI

Key Themes

Financing interconnector projects Regional power systems planning Regulatory harmonisation Integration and market reform Regional institutions Environmental concerns

Financing interconnection projects

Approaches being used in developing countries predominantly bilateral donor, multilateral and DFI financing

- Problems: soft budget constraints and moral hazard (Manantali)
- Response: conditionalities (NT2) resulting in parallel projects funded by governments without social and environmental safeguards (GMS)

Private sector funding is very limited

- Garabi only example amongst case studies
- CIEN took big knock when Argentina banned exports of power

Regional power sector planning

Regional generation and transmission optimization exercises show significant gains over sum of national plans

- SAPP's latest 2025 Pool Plan requires US\$89
 b for 57,000 MW and associated transmission
- Savings compared to national power development plans of US\$48 b

Yet national plans continue to prevail

- Countries unwilling to surrender sovereignty to regional bodies (from Austria to Zimbabwe)
- Little feeling of ownership, uncertainty and skepticism about regional arrangements
- 'Optimal' plans are not robust subject to all sorts of technocrat-driven assumptions

Regulatory harmonisation

Harmonisation most advanced in:

- SEE (due to EU Directives)
- SIEPAC common rules, regional regulator, regional systems and market operator

Harmonisaton is not a pre-condition for RPSI, but in several schemes, greater regulatory harmonisation would give higher levels of certainty, improving the investment environment

- GMS national regulators in most but not all countries, no regional regulator
- SAPP regional electricity regulatory association exists but is a far cry from a regional regulator

Integration and market reform

Presumption in earlier epoch was that national electricity sector reforms would gather momentum, in part due to RPSI

- Transmission operators would be the focal points for RPSI
 - In practice, reforms have often stalled
 - SIEPAC shows that RPSI can go ahead even when countries are at very different stages of reform
 - However significant regional market development requires progressing from the single buyer model
 - Encouraging large customers to buy competitively important step in loosening grip of long-term bilateral contracts
 - SEE useful contrasting example where reforms and RPSI are moving together

Regional institutions

SPVs obvious solution for standalones

Generation: Cahara Bassa, Manantali, NT2

Transmission: Garabi (Argentina-Brazil)

- In transmission and trade, a variety of institutional forms
 - Strong regional economic communities with power as a sub-component
 - SEE most extreme variant
 - SAPP, NBI, GCC
 - Power integration taking the lead
 - SIEPAC Central American Electrification Council (1979), pre-cursor to PPP (2001) and Mesoamerican Project (2008)
 - Looser regional arrangement
 - **GMS Economic Cooperation Program**
 - Members also belong to ASEAN Mekong Basin Development Cooperation (AMBDC)

Environmental concerns

Many of the schemes involve hydropower effectively displacing fossil fuels, leading to regional savings despite offsetting CH4

- Net savings probably quite small: for GMS regional strategy saving estimated at 3%
- No scheme has yet obtained CDM financing
 - SIEPAC tried, was rejected and is resubmitting
 - 220 kV Vietnam-Cambodia interconnector project has applied (2008) and awaits decision
- GCC: economic rationale to trade in gas overtaken by inflated LNG price
 - More profitable to export LNG and import coal for electricity generation
 - Lack of global thinking in countries driving up the LNG price

Conclusions

Case study scorecard

Transmission & trade		Successes	Problems		
1	PJM	DAM and real time markets, transmission	Locational marginal pricing does not give expected		
		auctions	investment signals.		
2	UCTE	Legally binding agreement after 2003 supply failure	Lack of coordinated regional planning and investment		
3	GMS	Bilateral trade a proven model	Imposition of social and environmental problems on poor countries		
5	SAPP	STEM and DAM	Failure to implement Pool Plan; regional capacity shortfalls		
6	Argentina-Brazil	Regional transmission project promoted and	Banning of exports by Argentine government		
		owned by private sector	destroyed basis of Garabi project and set back		
			market development in Southern Cone		
8	South East Europe	Progressive moves towards wholesale and	Next logical regional investment is located in region		
		retail competition	with uncertain status (Kosovo)		
10	SIEPAC	Creation of market institutions ahead of	Long process (23 years from feasibility study)		
		physical infrastructure			
11	GCC	Power Exchange Trading Agreement	World LNG market distorting regional trade in gas,		
			reulting in imports of coal for electricty generation		
12	NBI	Investment projects underway	Lack of defined division of responsibilities between		
			NBI and EAPP		

Generation schemes		Successes	Problems		
4	Cahora Bassa	Consistent supply since 1997	Sabotage: 18 years out of service		
7	Manantali	Operated satisfactorily since commissioning	Low tariffs and failure to repay loans		
9	Nam Theun 2	Export revenues for Laos, clean power for Thailand	Controversy over share for private participants		

Case study scorecard – particular examples of mixed outcomes

Transmission & trade		Successes	Problems		
5	SAPP	STEM and DAM	Failure to implement Pool Plan; regional capacity		
			shortfalls		

6	Argentina-Brazil	Regional transmission project promoted and	Banning of exports by Argentine government
		owned by private sector	destroyed basis of Garabi project and set back
			market development in Southern Cone

Has the potential of Regional **Power** Sector Integration been realised?

Underlying economics extremely strong, yet RPSI achievements have been modest

RPSI has proved difficult to achieve fundamentally because of lack of political will:

- Countries have strong risk perceptions about regional schemes, gravitating towards autarchy
- Regional institutions are not given the mandate to enforce cost-saving regional solutions

 Hopes that the power sector would drive a broad regional integration agenda amongst developing countries have not materialised

Instead RPSI has not infrequently been a follower rather than a leader

Have we been too ambitious?

Bank and other agencies have given a lot of support to RPSI without necessarily appreciating the underlying realities.

In particular, long-term bilateral contracts provide the basis for most of the electricity trade that takes place

- this will necessarily continue because the financing of new projects requires long-term PPAs to be in place
- Are complex institutional structures needed if trade is predominantly bilateral?
- Short-term competitive markets for residual requirements offer some (limited) benefits
- Coordinated regional investment would deliver much greater benefits
 - but NO regional institution has the mandate to enforce an optimal regional power development plan

Where to now?

- Have to conclude that strengthening institutions and aspiring to continuous reforms has not always succeeded
- Challenge going-forward is to identify specific approaches and interventions that would help build and/or sustain momentum for RPSI
 - Major lessons are that there is no linear progression and no 'one size fits all' solution
 - RPSI schemes go through cycles of development and have different needs at different times
 - Approach thus must be to offer a range of options grounded in theory and experience

Regional Power Integration:

Early Findings from an ESMAP Regional Power Study

Peter Robinson peter.robinson@eca-uk.com

